Math, asked by subit, 1 year ago

show that tanA +cotA =2cosec 2A

Answers

Answered by Ajay11111
131
tanA + cotA = (sinA/cosA) + (cosA/sinA) 
= (sinA.sinA + cosA.cosA)/sinA.cosA 
= 2 (sin²A + cos²A) / 2 sinA.cosA 
= 2 × 1/sin2A 
= 2 cosec2A
LHS=RHS
hence proved
Answered by pinquancaro
58

Answer and Explanation :

To show : Expression \tan A +\cot A =2\csc 2A

Solution :

Taking LHS,

\tan A +\cot A

=\frac{\sin A}{\cos A}+\frac{\cos A} {\sin A}

Taking LCM,

=\frac{\sin^2 A+\cos^2 A}{\cos A\times \sin A}

We know, \sin^2 A+\cos^2 A=1

=\frac{1}{\cos A\times \sin A}

Multiply and divide by 2,

=\frac{2}{2\cos A\times \sin A}

We know, 2\cos A\times \sin A=\sin 2A

=\frac{2}{\sin 2A}

=2\csc 2A

= RHS

Therefore, LHS=RHS.

Similar questions