show that
is irrational where
is given to be an irrational
Answers
Given :-
Solution :-
Step-by-step explanation:
Given :-
\sqrt{7 \:} \: is \: irrational \:
7
isirrational
Solution :-
\begin{gathered}let \: assume \: 5 \: + 2 \sqrt{7 \:} \: is \: \:an \: \\ rational \: number \: \\ therefore \: 5 \: + \: 2 \sqrt{7 } \: = \: a \div b \\ (a \: and \: b \: are \: integers \: )\: \\ 2 \sqrt{7 } \: = \: a \: \div \: b \: - 5 \\ 2 \sqrt{7 } = \: a \: - \: 5b \div b \\ \sqrt{7} \: = \: a \: - \: 5b \: \div 2b \: \\ \: since \: here \: a \: and \: b \: are \: integers \: \: \\ therefore \: \: \sqrt{7} \: is \: rational \: . \\ this \: contradicts \: the \: fact \: that \: \: \\ \sqrt{7} \: is \: irrational \: .therefore \: our \: \\ assumption \: was \: wrong \: \\ hence \: \: 5 \: + \: 2 \sqrt{7} \: is \: irrational \: \end{gathered}
letassume5+2
7
isan
rationalnumber
therefore5+2
7
=a÷b
(aandbareintegers)
2
7
=a÷b−5
2
7
=a−5b÷b
7
=a−5b÷2b
sincehereaandbareintegers
therefore
7
isrational.
thiscontradictsthefactthat
7
isirrational.thereforeour
assumptionwaswrong
hence5+2
7
isirrational