Math, asked by indianscalepanruti, 6 months ago

show that
5 + 2   \sqrt{7}
is irrational where
 \sqrt{7}
is given to be an irrational

Answers

Answered by Anonymous
5

Given :-

 \sqrt{7 \:} \:  is \: irrational \:

Solution :-

let \: assume \: 5 \:  + 2 \sqrt{7 \:}  \: is \:  \:an \: \\  rational \: number \:   \\ therefore \: 5 \:  +  \: 2 \sqrt{7 }  \:  =  \: a \div b  \\ (a \: and \: b \: are \: integers \: )\:  \\ 2 \sqrt{7 }  \:  =  \: a \:  \div  \: b \:  - 5 \\ 2 \sqrt{7 }   =  \: a \:  -  \: 5b \div b \\  \sqrt{7}  \:  =  \: a \:  -  \: 5b \:  \div 2b \:  \\ \: since \: here \: a \: and \: b \: are \: integers \:  \:  \\ therefore \: \:  \sqrt{7}  \: is \: rational \: . \\ this \: contradicts \: the \: fact \: that \: \:   \\ \sqrt{7}   \: is \: irrational \: .therefore \: our \: \\  assumption \: was \: wrong \:  \\ hence \:  \: 5 \:  +  \: 2 \sqrt{7}  \: is \: irrational \:

Answered by Anonymous
0

Step-by-step explanation:

Given :-

\sqrt{7 \:} \: is \: irrational \:

7

isirrational

Solution :-

\begin{gathered}let \: assume \: 5 \: + 2 \sqrt{7 \:} \: is \: \:an \: \\ rational \: number \: \\ therefore \: 5 \: + \: 2 \sqrt{7 } \: = \: a \div b \\ (a \: and \: b \: are \: integers \: )\: \\ 2 \sqrt{7 } \: = \: a \: \div \: b \: - 5 \\ 2 \sqrt{7 } = \: a \: - \: 5b \div b \\ \sqrt{7} \: = \: a \: - \: 5b \: \div 2b \: \\ \: since \: here \: a \: and \: b \: are \: integers \: \: \\ therefore \: \: \sqrt{7} \: is \: rational \: . \\ this \: contradicts \: the \: fact \: that \: \: \\ \sqrt{7} \: is \: irrational \: .therefore \: our \: \\ assumption \: was \: wrong \: \\ hence \: \: 5 \: + \: 2 \sqrt{7} \: is \: irrational \: \end{gathered}

letassume5+2

7

isan

rationalnumber

therefore5+2

7

=a÷b

(aandbareintegers)

2

7

=a÷b−5

2

7

=a−5b÷b

7

=a−5b÷2b

sincehereaandbareintegers

therefore

7

isrational.

thiscontradictsthefactthat

7

isirrational.thereforeour

assumptionwaswrong

hence5+2

7

isirrational

Similar questions