Math, asked by soccer5kid, 11 months ago

Show that \frac{cos 15° + sin 15°}{cos 15° - sin 15°} =\sqrt{3}

Answers

Answered by ShresthaTheMetalGuy
1

 LHS = \frac{ \cos(15°)  +  \sin(15°) }{ \cos(15°) -  \sin(15°)  }

OR

 =  \frac{cos15° + sin(90° - 75°)}{cos15° - sin(90°  - 75°)}

 =  \frac{cos15 °+ cos75°}{cos15 °- cos75°}

 =  \frac{2cos45° \times cos (   -  30°)}{ - 2sin45° \times  \sin(   - 30°) }

 =  \frac{ -  \cos(90° - 45°) \times  \frac{ \sqrt{3} }{2}  }{ \sin(45°)  \times ( -  \frac{1}{2} )}

 =  \frac{ -  \sin(45°)  \times  \frac{ \sqrt{3} }{2} }{ \sin(45°)  \times ( -  \frac{1}{2} )}

 =  \frac{ -  \frac{ \sqrt{3} }{2} }{ -  \frac{1}{2} }

 =  \sqrt{3}  = RHS

Hence, proved

Similar questions