Math, asked by PragyaTbia, 1 year ago

Show that \left|\begin{array}{ccc}b+c&c+a&a+b\\a+b&b+c&c+a\\a&b&c\end{array}\right| = a³ + b³ + c³ - 3abc

Answers

Answered by hukam0685
0

Answer:


Step-by-step explanation:

to show that

\left|\begin{array}{ccc}b+c&c+a&a+b\\a+b&b+c&c+a\\a&b&c\end{array}\right|

= a³ + b³ + c³ - 3abc

split the determinant as

\left|\begin{array}{ccc}b&c&a\\a&b&c\\a&b&c\end{array}\right|+\left|\begin{array}{ccc}c&a&b\\b&c&a\\a&b&c\end{array}\right|\\\\\\

first determinant is to be zero since two rows are identical.

now solve second determinant

\left|\begin{array}{ccc}c&a&b\\b&c&a\\a&b&c\end{array}\right|\\\\\\=c(c^{2} -ab)-a(bc-a^{2} )+b(b^{2} -ac)\\\\=c^{3} -abc-abc+a^{3}+b^{3}-abc\\\\=a^{3}+b^{3}+c^{3}-3abc\\\\

hence proved



Similar questions