Math, asked by ayoushsingh48, 4 months ago

Show that :
\sf{\sqrt{\dfrac{1+SinA}{1-SinA}}=Sec A + tanA }

Pls don't spam
No useless answers ! ​

Answers

Answered by Anonymous
7

AnswEr-:

  • Show that -:

  • \bf{\mathrm{\sqrt{\dfrac{1+SinA}{1-SinA}}=Sec A + tanA }}

Now ,

  • Solving L.H.S -:

  • \bf{\mathrm{L.H.S = \sqrt{ \dfrac{1+SinA}{1-SinA}}}}

  • \bf{\mathrm{R.H.S =  Sec A + tan A}}

  • Now Solving L.H.S -:

  • \bf{\mathrm{L.H.S = \sqrt{ \dfrac{1+SinA}{1-SinA}}}}

  • \sf{\bf{ By \: Multiplying  \:by \:their \: Conjugates \: in\:the L.H.S }}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \dfrac{1+SinA \times 1 + Sin A }{1-SinA \times 1 + Sin A}}}}}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \dfrac{(1+SinA)^{2}  }{1-SinA \times 1 + Sin A}}}}}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \dfrac{   (1+SinA)^{2} }{(1-SinA ) (1 + Sin A)}}}}}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \dfrac{  (1+SinA)^{2}  }{  1 - Sin^{2} A }}}}}

  • \sf{\star {As \: we \:know \: that -: \:\: 1 - Sin^{2} A = cos^{2} A  }}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \dfrac{  (1+SinA)^{2}  }{  cos^{2} A }}}}}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \left(\dfrac{1+SinA  }{  cos A }\right)^{2}}}}}

  • \sf{\star {As \: we \:know \: that -: \:\: \bf{\sqrt{(y)^{2}} = y   }}}

  • \longrightarrow{\bf{\mathrm{\sqrt{ \left(\dfrac{1+SinA  }{  CosA }\right)^{2}}}}}

  • \longrightarrow{\bf{\mathrm{ \dfrac{1+SinA  }{  cos A }}}}

  • \longrightarrow{\bf{\mathrm{ \dfrac{1 }{  cos A } +  \dfrac{SinA }{  cos A }}}}

  • \sf{\star {As \: we \:know \: that -: \:\: \dfrac{1}{cosA} = Sec A }}

  • \longrightarrow{\bf{\mathrm{ Sec A +  \dfrac{SinA }{  cos A }}}}

  • \sf{\star {As \: we \:know \: that -: \:\: \dfrac{SinA}{cosA} = tan A }}

  • \longrightarrow{\bf{\mathrm{ Sec A + tanA }}}

Therefore ,

  • \longrightarrow{\bf{\mathrm{ L.H.S = Sec A + tanA }}}

  • and ,

  • \longrightarrow{\bf{\mathrm{ R.H.S = Sec A + tanA }}}

  • From this we can see that ,

  • \longrightarrow{\bf{\mathrm{ (L.H.S = Sec A + tanA) = (R.H.S = Sec A + tanA) }}}

Therefore,

  • \longrightarrow{\bf{\mathrm{ L.H.S = R.H.S }}}

  • \longrightarrow{\bf{\mathrm{ Hence,\: Verified!}}}

_______________________________________________________

Similar questions