Show that the angle between two diagonals of a cube is cos inverse 1/3
Answers
Answered by
2
Let OABCDEFG be a cube with vertices as below
O(0,0,0), A(a,0,0), B(a,a,0), C(0,a,0),
D(0,a,a), E(0,0,a), F(a,0,a) and G(a,a,a)
There are four diagonals OG,CF,AD and BE for the cube.
Let us consider any two say OG and AD
We know that if A(x1,y1,z1) and B(x2,y2,z2) A(x1,y1,z1) and B(x2,y2,z2) are two points in space then AB−→−=(x2−x1)i^+(y2−y1)j^+(z2−z1)k^AB→=(x2−x1)i^+(y2−y1)j^+(z2−z1)k^
⇒OG−→−=(a−0)i^+(a−0)j^+(a−0)k^=ai^+aj^+ak^⇒OG→=(a−0)i^+(a−0)j^+(a−0)k^=ai^+aj^+ak^ and
AD−→−=(0−a)i^+(a−0)j^+(a−0)k^=−ai^+aj^+ak^AD→=(0−a)i^+(a−0)j^+(a−0)k^=−ai^+aj^+ak^
|OG−→−|=a2+a2+a2−−−−−−−−−−√=3–√a|OG→|=a2+a2+a2=3a
|AD−→−|=(−a)2+a2+a2−−−−−−−−−−−−−√=3–√a|AD→|=(−a)2+a2+a2=3a
OG−→−.AD−→−=−a2+a2+a2=a2OG→.AD→=−a2+a2+a2=a2
We know that angle between any two vectors a→andb→a→andb→ =cos−1(a→.b→|a→||b→|)=cos−1(a→.b→|a→||b→|)
⇒⇒Angle between the two diagonals OG−→−OG→ and AD−→−AD→=
cos−1(OG−→−.AD−→−|OG−→−||AD−→−|)cos−1(OG→.AD→|OG→||AD→|)
=cos−1(a23√a.3√a)=cos−1a23a2=cos−1(a23a.3a)=cos−1a23a2
=cos−113=cos−113
Hence proved.
Attachments:
Similar questions
Chemistry,
7 months ago
Social Sciences,
7 months ago
Science,
7 months ago
Physics,
1 year ago
Psychology,
1 year ago
Math,
1 year ago