Math, asked by Nikalre, 10 months ago

Show that the diagonals of a rhombus are perpendicular to each other

Follow karo yaar =_=​

Answers

Answered by navtejp2
0

Answer:

Step-by-step explanation:

⇒ Given :- ABCD is a rhombus

AC and BD are diagonals of rhombus intersecting at O.

⇒ To prove :- ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

⇒ Proof :- All Rhombus are parallelogram, Since all of its sides are equal.

AB = BC = CD = DA ────(1)

The diagonal of a parallelogram bisect each other

Therefore, OB = OD and OA = OC ────(2)

In ∆ BOC and ∆ DOC

BO = OD [ From 2 ]

BC = DC [ From 1 ]

OC = OC [ Common side ]

∆ BOC ≅ ∆ DOC [ By SS congruency criteria ]

∠BOC = ∠DOC [ C.P.C.T ]

∠BOC + ∠DOC = 180° [ Linear pair ]

2∠BOC = 180° [ ∠BOC = ∠DOC ]

∠BOC = 180°/2

∠BOC = 90°

∠BOC = ∠DOC = 90°

Similarly, ∠AOB = ∠AOD = 90°

Hence, ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90

Answered by dalbagsinghdalbagtha
1

Answer:

Mark as brainlist please

Step-by-step explanation:

Given :- ABCD is a rhombus

AC and BD are diagonals of rhombus intersecting at O.

⇒ To prove :- ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

⇒ Proof :- All Rhombus are parallelogram, Since all of its sides are equal.

AB = BC = CD = DA ────(1)

The diagonal of a parallelogram bisect each other

Therefore, OB = OD and OA = OC ────(2)

In ∆ BOC and ∆ DOC

BO = OD [ From 2 ]

BC = DC [ From 1 ]

OC = OC [ Common side ]

∆ BOC ≅ ∆ DOC [ By SS congruency criteria ]

∠BOC = ∠DOC [ C.P.C.T ]

∠BOC + ∠DOC = 180° [ Linear pair ]

2∠BOC = 180° [ ∠BOC = ∠DOC ]

∠BOC = 180°/2

∠BOC = 90°

∠BOC = ∠DOC = 90°

Similarly, ∠AOB = ∠AOD = 90°

Hence, ∠BOC = ∠DOC = ∠AOD = ∠AOB = 90°

Similar questions