Math, asked by nirmalajagdish81, 9 days ago

Show that the effective value of a sinusoidal alternating current is
independent of frequency and
phase angle.​

Answers

Answered by nirman95
5

Let the current be :

i =  i_{0} \sin( \omega t)

Now, effective current means RMS CURRENT:

 \rm i_{rms} =    \sqrt{ \frac{  \displaystyle \int_{0}^{T}  {i}^{2} \: dt }{  \displaystyle\int_{0}^{T} \: dt} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle \int_{0}^{T}  { \sin}^{2}( \omega t)  \: dt }{T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle \int_{0}^{T}   \{1 -  \cos( 2\omega t) \}  \: dt }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle \int_{0}^{T}  dt -   \int_{0}^{T}\cos(2 \omega t)dt  }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle T -   \frac{ \sin(2 \omega T) }{2 \omega}  }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle T -   \frac{ \sin(2  \times  \frac{2\pi}{T}\times   T) }{2 \omega}  }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle T -   \frac{ \sin(4\pi) }{2 \omega}  }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{  \displaystyle T -   \frac{ 0 }{2 \omega}  }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{ T }{2T} }

 \rm  \implies i_{rms} = i_{0} \sqrt{ \dfrac{ 1 }{2} }

 \rm  \implies i_{rms} =  \dfrac{i_{0}}{ \sqrt{2} }

So, the effective current is independent of frequency and phase angle.

[Hence proved].

Similar questions