Math, asked by sammardildar, 2 months ago

Show that the function f(x) = x 3 + x 2 + 5x + 6 is an increasing function.

Answers

Answered by avk6418peh6wh
0

Answer:

So, it is proved that f(x) is an increasing function.

Step-by-step explanation:

f(x) = x^3+x^2+5x+6

Now put x = 1,

f(1) = (1)^3+(1)^2+5(1)+6

=1+1+5+6

=13

Now put x = 2,

f(2) = (2)^3+(2)^2+5(2)+6

=8+4+10+6

=28

Now put x = 0,

f(0) = (0)^2+(0)^2+5(0)+6

=0+0+0+6

=6

So, here we observe as the values of x increase the value of f(x) increases and as we decrease it decreases.

So, it is proved that f(x) is an increasing function.

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f(x) =  {x}^{3} +  {x}^{2} + 5x + 6

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \: \dfrac{d}{dx} f(x) = \dfrac{d}{dx}( {x}^{3} +  {x}^{2} + 5x + 6)

\rm :\longmapsto\: \:  f'(x) = \dfrac{d}{dx}{x}^{3} +  \dfrac{d}{dx}{x}^{2} +\dfrac{d}{dx} 5x + \dfrac{d}{dx}6

We know,

\green{ \boxed{ \bf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this

\rm :\longmapsto\:f'(x) =  {3x}^{2} + 2x + 5 + 0

\rm :\longmapsto\:f'(x) =  {3x}^{2} + 2x + 5

Now,

We know,

\rm :\longmapsto\:In \: a \: quadratic \: expression \:  {ax}^{2} + bx + c, \: if \:

\rm :\longmapsto\:a > 0 \: and \: discriminant \:  < 0 \: then \:  {ax}^{2} + bx + c > 0

Here,

Quadratic expression is .

\rm :\longmapsto\: {3x}^{2} + 2x + 5

Here,

\rm :\longmapsto\:a = 3

\rm :\longmapsto\:b = 2

\rm :\longmapsto\:c = 5

So,

\rm :\longmapsto\:Discriminant =  {b}^{2} - 4ac

\rm  \:  =  \: \: {(2)}^{2} - 4 \times 3 \times 5

\rm  \:  =  \: \:4 - 60

\rm  \:  =  \: \: - 54

So, we have now,

\rm :\longmapsto\:a = 3 > 0 \:  \: and \: Discriminant =  - 54 < 0

\rm :\implies\: {3x}^{2} + 2x + 5 > 0

\bf\implies \:f'(x) > 0

\bf\implies \:f(x) \: is \: always \: increasing \: for \: every \:x  \in \: R

Additional Information :-

↝ If the functions f and g are increasing (or decreasing) on the interval (a,b), then the sum of the functions f+g is also increasing (or decreasing) on this interval.

↝ If the function f(x) is increasing (or decreasing) on the interval (a,b), then the opposite function − f(x)  is decreasing (or increasing) on this interval.

↝ If the function f(x) is increasing (or decreasing) on the interval (a,b), then the inverse function of f(x) is decreasing (or increasing) on this interval.

Similar questions