Math, asked by jayanthboggala123, 3 months ago

show that the line joining the points A(2,3,-1) and B(-3,5,-3) Is perpendicular the line joining C(1,2,3)and D(3,5,7)​

Answers

Answered by TheValkyrie
24

Question:

Show that the line joining the points A (2, 3, -1) and B (3, 5, -3) is perpendicular to the line joining C (1, 2, 3) and (3, 5, 7).

Answer:

Step-by-step explanation:

Given:

  • A line joining the points A (2, 3, -1) and B (3, 5, -3)
  • A line joining the points C (1, 2, 3) and D (3, 5, 7)

To Prove:

  • The lines are perpendicular to each other

Proof:

For two lines to be perpendicular, the dot product of their direction vectors are 0.

That is,

l₁l₂ + m₁m₂ + n₁n₂ = 0

First find the direction ratios of the lines AB and CD

Drs of AB = (3-2, 5-3, -3+1)

= (1, 2, -2)

Drs of CD = (3-1, 5-2, 7-3)

= (2, 3, 4)

Now finding the direction cosines(l₁, m₁, n₁) of line AB

We know that

\tt l= \pm \dfrac{a}{\sqrt{a^2+b^2+c^2} } ,m=\pm \dfrac{b}{\sqrt{a^2+b^2+c^2} },n= \pm \dfrac{c}{\sqrt{a^2+b^2+c^2} }

Hence,

\tt Dcs\:of\:line\:AB=\dfrac{1}{\sqrt{1+4+4} } ,\dfrac{2}{\sqrt{1+4+4} } ,\dfrac{-2}{\sqrt{1+4+4} }

\tt Dcs\:of\:line\:AB=\dfrac{1}{3 } ,\dfrac{2}{3 } ,\dfrac{-2}{3 }--(1)

Now finding direction cosines (l₂, m₂, n₂) of line CD

Hence,

\tt Dcs\:of\:line\:CD=\dfrac{2}{\sqrt{4+9+16} } ,\dfrac{3}{\sqrt{4+9+16} } ,\dfrac{4}{\sqrt{4+9+16} }

\tt Dcs\:of\:line\:CD=\dfrac{2}{\sqrt{29} } ,\dfrac{3}{\sqrt{29} } ,\dfrac{4}{\sqrt{29} }---(2)

From 1 and 2,

\tt \dfrac{2}{\sqrt{29} } \times \dfrac{1}{3 } +\dfrac{3}{\sqrt{29} }\times\dfrac{2}{3 }  +\dfrac{4}{\sqrt{29} }\times \dfrac{-2}{3 }

\implies \tt\dfrac{2}{3\sqrt{29} } +\dfrac{6}{3\sqrt{29} } +\dfrac{-8}{3\sqrt{29} }

\implies \tt +\dfrac{8}{3\sqrt{29} } +\dfrac{-8}{3\sqrt{29} }

= 0

Hence the lines are perpendicular to each other.


Anonymous: Superb, Excellent answer ✌
Anonymous: superb , excellent , bhag yahase
Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

Show that the line joining the points A(2,3,-1) and B(-3,5,-3) Is perpendicular the line joining C(1,2,3)and D(3,5,7)

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge {AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given = \begin{cases} &\sf{Line \:  joining  \: the \:  points  \: A(2,3,-1)  \: and \:  B(-3,5,-3).} \\ &\sf{Line  \: joining  \: the \:  points \:  C(1,2,3) \: and \:  D(3,5,7).} \end{cases}\end{gathered}\end{gathered}

To Show :-

  • Line Segment AB is perpendicular to CD.

─━─━─━─━─━─━─━─━─━─━─━─━─

Concept Used :-

☆Let us consider two lines having direction ratios

\sf \:  (a_1,b_1,c_1) \: and \: (a_2,b_2,c_2) \:

\sf \:  then \: lines \: are \: perpendicular \: iff

\bf \:  a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0

☆Let us consider two points A and B having coordinates

\sf \:  ⟼(x_1,y_1,z_1) \: and \: (x_2,y_2,z_2) \: then \: direction \: ratio \: is

\bf \:  ⟼(x_2 - x_1,y_2 - y_1,z_2 - z_1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

☆Let us take first Line segment joining the points A(2,3,-1) and B(-3,5,-3).

☆So direction ratios of line segment AB is given by

\sf \:  ⟼d.r's  \: of  \: AB = ( - 3 - 2 ,5 - 3 ,  - 3 + 1)

\sf \:  ⟼d.r's \:  of  \: AB = ( - 5 ,2 , - 2)

\bf\implies \:a_1 =  - 5,b_1 = 2,c_1 =  - 2

☆Let us take second Line segment joining the points C(1,2,3)and D(3,5,7).

☆So, direction ratios of line segment CD is given by

\sf \:  ⟼d.r's of \: CD \:  = (3 - 1 ,5 - 2 ,7 - 3)

\sf \:  ⟼d.r's  \: of \: CD = (2 ,3 ,4)

\bf\implies \:a_2 = 2, \: b_2 = 3 \: ,c_2 \:  = 4

To show that Line segment AB is perpendicular to Line segment CD,

☆ Let us assume

\sf \:  ⟼a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}

\sf \:  ⟼ - 5 \times 2 + 3 \times 2 + ( - 2) \times 4

\sf \:  ⟼ - 10 + 6 - 8 =  - 12 \: ≠ \: 0

─━─━─━─━─━─━─━─━─━─━─━─━─

Hence, Line segment AB is not perpendicular to CD.

Similar questions