Show that the line y=mx+c touches the elipse x^2/a^2+y^2/b^2=1 if c^2=a^2m^2+b^2
Answers
Given----> Line y = mx + c touches the ellipse
x² / a² + y² / b² = 1 .
To prove ----> If line touches the ellipse then
c² = a² m² + b²
Concept used ---->
1) Any line touches any curve if it intersect line at one point only .
2) If roots of quadratic equation ax² + bx + c = 0 is equal than
b² - 4ac = 0
Solution----> ATQ,
Equation of ellipse is
x² / a² + y² / b² = 1
Multiplying whole equation by a²b² , we get,
a²b² ( x²/a² ) + a²b² ( y²/b² ) = a²b²
b² x² + a² y² = a²b² ...................( 1 )
Now equation of line ,
y = mx + c .......................( 2 )
Putting y = mx + c in equation ( 1 )
=> b²x² + a² ( mx + c )² = a²b²
=> b²x² + a² ( m²x² + c² + 2cmx ) = a²b²
=> b²x² + a²m²x² + a²c² + 2cma²x - a²b² = 0
=> ( b² + a²m² ) x² + 2cma² x + ( a²c² - a²b² ) = 0
Now, comparing this equation with,
Ax² + Bx + C = 0
A= ( b² + a²m² ) , B = 2a²cm , C = ( a²c² - a²b² )
Now , line ( 2 ) touches the ellipse ( 1 ) , so above equation has same root , so ,
B² - 4 AC = 0
=> ( 2a²cm )² - 4 ( b² + a²m² ) ( a²c² - a²b² ) = 0
=> 4a⁴c²m² = 4 ( b² + a²m² ) ( a²c² - a²b² )
=> 4a⁴c²m² = 4a² ( b² + a²m² ) ( c² - b² )
4a² is cancel out from each side
=> a²m²c² = ( b² + a²m² ) ( c² - b² )
=> a²m²c² = b²c² - b⁴ + a²m²c² - a²m²b²
a²m²c² is cancel out from each side and we get,
=> 0 = b²c² - b⁴ - a²m²b²
=> b⁴ + a²m²b² = b²c²
=> b² ( b² + a²m² ) = b²c²
b² is cancel out from each side and we get,
=> b² + a²m² = c²
=> c² = a² m² + b²
Which is required condition .
For second method plzz see the attachement