Math, asked by 12ahujagitansh, 13 hours ago

Show that the matrix is nilpotent matrix of order 3

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5& 2&6\\  - 2& - 1& - 3\end{array}\right]\end{gathered}

Now, Consider

\rm :\longmapsto\: {A}^{2}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5& 2&6\\  - 2& - 1& - 3\end{array}\right]\end{gathered} \times \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5& 2&6\\  - 2& - 1& - 3\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}1 + 5 - 6&1 + 2 - 3&3 + 6 - 9\\5 + 10 - 12& 5 + 4 - 6&15 + 1218\\  - 2 - 5 + 6& - 2 - 2 + 3& - 6 - 6 + 9\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3&3&9\\  - 1& - 1& - 3\end{array}\right]\end{gathered}

Now, Consider

\rm :\longmapsto\: {A}^{3}

\rm \:  =  \:  {A}^{2} \times A

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3&3&9\\  - 1& - 1& - 3\end{array}\right]\end{gathered} \times \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5& 2&6\\  - 2& - 1& - 3\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0 + 0 + 0&0 + 0 + 0&0 + 0 + 0\\3 + 15 - 18& 3 + 6 - 9&9 + 18 - 27\\  - 1 - 5 + 6& - 1 - 2 + 3& - 3 - 6 + \end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0& 0&0\\ 0&0&0\end{array}\right]\end{gathered}

\bf\implies \: {A}^{3}  = 0

\bf\implies \:A \: is \: nilpotent  \: matrix\: of \: order \: 3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More

Different types of Matrices

\begin{gathered}\boxed{\begin{array}{c|c} \bf  & \bf  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf Idempotent \: Matrix & \sf  {A}^{2} = A  \\ \\ \sf Nilpotent \: Matrix & \sf  {A}^{k} = 0  \\ \\ \sf Periodic \: Matrix & \sf  {A}^{k + 1} = A\\ \\ \sf Involutory \: Matrix & \sf  {A}^{2} =I  \end{array}} \\ \end{gathered} \\

Similar questions