Math, asked by sandykalashan, 1 year ago

show that the plane 3x+12y-6z=17 touches the hyperboloid 3x^2-6y^2+9z^2=-17 and find the point of contac

Answers

Answered by kvnmurty
11

Easier method :

 

Given hyperboloid:   x^2/3 - y^2/2 + z^2 /1 = - 17/9

Tangential plane at (a, b, c): a x/3 – 2 by/3 + c z/1 = -17/9

       =>          - 3a/17 x + 6b/17 y – 9c z /17  = 1

     Given plane:       3 x/17  + 12 y/17 - 6 z/17 = 1

Compare coefficients :     a = -1,  b = 2,  c = 2/3

        Point of contact = (-1, 2, 2/3)

======================

Longer method by solving for intersection:


Equation of the plane:   3 x + 12 y - 6 z = 17     --- (1)
Hyperboloid  =               3 x^2 - 6 y^2  + 9 z^2  = - 17 
                             or,  12 x^2 - 24 y^2 + 36 z^2 = - 68     --- (2)


The points of contact form an ellipse.
        
6z = 3 x + 12 y - 17     from (1)
using (2),
  12 x^2 - 24y^2 + 9x^2 + 144y^2 + 289+ 72xy - 408y -102 x = -68

simplify:

    21 x^2 + 120 y^2 + 72 x y -102 x - 408 y + 357 = 0  
     7 x^2 + 40 y^2 + 24 x y - 34 x - 136 y + 119 = 0

 

7 x^2 + 2 (12 y – 17) x + (40y^2 – 136 y + 119) = 0

 

x = [ (17 – 12 y) + - sqrt  { (12y-17)^2 – 280y^2  +  7*136y – 7*119  }   ] / 7

x = [ (17 – 12 y)  + - 2 sqrt(2*17)* sqrt  { - (y - 2)^2 } ] /7

 

for x to be real,  y = 2.    Then   x = - 1

From (1),   z = (-3 + 24 – 17)/6 = 2/3

We have just one point of contact:  (-1, 2, 2/3).

Similar questions