Math, asked by kyoto, 1 year ago

show that the points (0,7,10),(-1,6,6) and (-4,9,6) forms an isoceles right angled triangle.

Answers

Answered by sonu806
2
Find the distance of the points
Two distance will be same
And the other one will be different
That is the reason it will be isosceles triangle

Hope it helps you


kyoto: Please give the solution
kyoto: Please give the solution
sonu806: 3 root 2, 3 root 2, 6
Answered by Anonymous
3

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

{\boxed{\sf\:{Points\;be\;PQR}}}

Hence,

PQ = √{(-1 - 0)² + (6 - 7)² + (6 - 10)²}

PQ = √{(-1)² + (-1)² + (-4)²}

PQ = √(1 + 1 + 16)

PQ = √18

PQ = 3√2

\textbf{\underline{Here\;we\;get:-}}

PQ = 3√2

Now,

QR = √{(-4 + 1)² + (9 - 6)² + (6 - 6)²}

QR = √{(-3)² + (3)² + (0)²}

QR = √(9 + 9)

QR = √18

QR = 3√2

\textbf{\underline{Here\;we\;get:-}}

QR = 3√2

Now,

RP = √{(0 + 4)² + (7 - 9)² + (10 + 6)²}

RP = √{(4)² + (-2)² + (4)²}

RP = √(16 + 4 + 16)

RP = √(20 + 16)

RP = √36

RP = 6

\textbf{\underline{Here\;we\;get:-}}

RP = 6

Therefore,

PQ² + QR² = RP²

(3√2)² + (3√2)² = (6)²

18 + 18 = 36

36 = 36

By the Pythagoras theorem PQR is right angled triangle

\Large{\boxed{\sf\:{We\;observed\;that\;points\;are\; vertices\;of\;right\; angled\;triangle}}}

Similar questions