show that the points (12,8),(-2,6) and (6,0) are the vertices of a right angled triangle and also show that the mid points of the hypotenuse is equidistant from the angular points.
Answers
Let P(12,8), Q(-2,6), and R(6,0) be the given points.
Then,
- By using the Distance formula
PQ² = (x₂ - x₁)² + (y₂ - y₁)²
PQ² = (-2 - 12)² + (6 - 8)²
PQ² = (-14)² + (-2)²
PQ² = 196 + 4
PQ² = 200
PQ = √(200) units
Now,
QR² = (6 + 2)² + (0 - 6)²
QR² = (8)² + (-6)²
QR² = 64 + 36
QR² = 100
QR = √(100)
QR = 10 units
And
RP² = (12 - 6)² + (8 - 0)²
RP² = (6)² + (8)²
RP² = 36 + 64
RP² = 100
RP = √(100)
RP = 10 units
So,
(PQ)² = 200 = 100 + 100 = (QR)² + (RP)²
→ PQ² = PR² + QR²
Therefore,
- Triangle PQR is a right-angled triangle. The right angle is at angle R.
Now,
- Let S be the midpoint of the hypotenuse PQ.
Then,
The coodinates of S = [ (x₁ + x₂)/2 , (y₁ + y₂)/2 ]
= [ (12 + (-2))/2 , (8 + 6)/2 ]
= [ (10/2), (14/2) ]
= (5,7)
Now,
SP² = (x₂ - ₁x)² + (y₂ - y₁)²
SP² = (12 - 5)² + (8 - 7)²
SP² = (7)² + (1)²
SP² = 49 + 1
SP² = 50
SP = √50 units
And,
SQ² = (x₂ - ₁x)² + (y₂ - y₁)²
SQ² = (-2 - 5)² + (6 - 7)²
SQ² = (-7)² + (-1)²
SQ² = 49 + 1
SQ² = 50
SQ = √50 units
Also,
SR² = (x₂ - ₁x)² + (y₂ - y₁)²
SR² = (6 - 5)² + (0 - 7)²
SR² = (1)² + (-7)²
SR² = 1 + 49
SR² = 50
SR = √50 units
- Hence, SP = SQ = SR, therefore, 'S' if the midpoints of the hypotenuse. And it is equidistant from the given angular points.