Math, asked by vaibhavsolanki43621, 9 months ago

Show that the points (-3, 2), (-5, -5), (2, -3) and (4, 4) are the vertices of a rhombus. Find the area of this rhombus.

Answers

Answered by AditiHegde
6

the area of rhombus ABCD = 45 sq units.

Given,

(-3, 2), (-5, -5), (2, -3) and (4, 4)

Let, A = (-3, 2), B = (-5, -5), C = (2, -3) and D = (4, 4)

Now, we need to find the distance between the points

AB = √ [ (-5+3)^2 + (-5-2)^2 ]

⇒ AB = √  [ (2)^2 + (-7)^2 ]

⇒ AB = √ ( 4+49 )

AB = √ (53 )

BC = √ [ (2+5)^2 + (-3+5)^2 ]

⇒ BC = √  [ (7)^2 + (2)^2 ]

⇒ BC = √ ( 49+4 )

BC = √ (53 )

CD = √ [ (4-2)^2 + (4+3)^2 ]

⇒ CD = √  [ (2)^2 + (7)^2 ]

⇒ CD= √ ( 4+49 )

CD = √ (53 )

AD = √ [ (4+3)^2 + (4-2)^2 ]

⇒ AD = √  [ (7)^2 + (2)^2 ]

⇒ AD = √ ( 49+4 )

AD = √ (53 )

AC = √ [ (2+3)^2 + (-3-2)^2 ]

⇒ AC = √  [ (5)^2 + (-5)^2 ]

⇒ AC= √ ( 25+25 )

AC = √ (50 )

BD = √ [ (4+5)^2 + (4+5)^2 ]

⇒ BD = √  [ (9)^2 + (9)^2 ]

⇒ BD = √ ( 81+81 )

BD = √ (162 )

AB = BC = CD = AD = √ (53 )           Sides

AC ≠ BD                                             Diagonals    

Therefore the points represent a rhombus.

Area of rhombus ABCD  =  1/2 × AC × BD

= 1/2 × √50 × √162

= 1/2 × 90

Therefore, the area of rhombus ABCD = 45 sq units.

Similar questions