Math, asked by khatoonnazneen989, 9 months ago

Show that the points (4,3), (6,4), (5,6) and (3,5) are the vertices of a square.

Answers

Answered by Anonymous
7

<div class="shy right"></div>

</div>

<style>

body {

background:#FFFF00

}

.face {

height: 600px;

width: 350px;

position: relative;

margin: auto;

}

.face:before {

content:'';

background:black;

height:122px;

width:95px;

position:absolute;

z-index:6;

left:210px;

top:29px;

border-radius:100% 190% 100% 0%;

transform: rotate(-20deg);

}

.face:after {

content:'';

width:230px;

height:180px;

background:black;

content:'';

transform: rotate(-8deg);

position:absolute;

border-radius:100% 160% 100% 0%;

left:70px;

bottom:-14px;

top:10px;

z-index:5;

}

.forhead, .forhead:after {

content: '';

width: 220px;

height: 181px;

background: #fbc6a3;

content: '';

transform: rotate(-3deg);

position: absolute;

border-radius: 60% 120% 50% 0%;

left: 67px;

bottom: -14px;

top: 21px;

z-index: 6;

}

.forhead:after {

width: 160px;

height: 150px;

border-radius: 150% 174% 159% 100%;

transform: rotate(-20deg);

top: 13px;

left: 59px;

border-top: 15px solid #fbc6a3;

}

.forhead:before{

background:#fbc6a3;

width:60px;

height:10px;

content:'';

position:absolute;

z-index:7;

left:105px;

top:9px;

transform: rotate(13deg);

border-radius:100%

}

.ear {

width:60px;

height:50px;

background:#fbc6a3;

z-index:7;

position:absolute;

border-radius:300% 190% 200% 100%;

transform: rotate(-20deg);

top:110px;

left:285px

}

.cheeks {

background: #fbc6a3;

width: 280px;

height: 100px;

border-radius: 50px 0px 50px 40px;

transform: rotate(-3deg);

position: relative;

content: 'a';

top: 108px;

left:10px

}

.cheeks:after {

width: 297px;

height: 100px;

background: #fbc6a3;

content: '';

transform: rotate(-3deg);

position: absolute;

border-radius: 100% 100% 100% 100%;

left: 1px;

bottom: -14px;

}

.eye {

width:40px;

height:40px;

position:relative;

background:black;

border-radius:100%;

animation: close-eye 4s none .2s infinite;

}

.eye:after {

content:'';

position:absolute;

background:white;

width:15px;

height:15px;

border-radius:100%;

left:17px;

top:12px;

}

.eye:before {

content:'';

position:absolute;

width:70px;

height:60px;

border-radius:100%;

border-top:2px solid black;

left:-20px;

margin-top:-20px;

}

.eye.left,.eye.right {

position:absolute;

top:80px;

left:100px;

z-index:10;

}

.eye.right {

left:190px;

top:90px;

}

.eyebrow {

animation: eyebroani 2s linear .2s infinite;

}

.eyebrow,.eyebrow:after {

position:absolute;

width:20px;

height:60px;

background:black;

z-index:8;

border-radius:15px;

transform: rotate(40deg);

top:10px;

left:90px;

}

.eyebrow:after {

content:'';

transform: rotate(-100deg);

left:19px;

margin-top:-23px;

top:auto;

}

.eyebrow.right {

left:180px;

top:8px;

transform: rotate(50deg);

}

.mouth {

position:absolute;

width:40px;

height:40px;

background:#76322f;

border-radius:100%;

top:180px;

left:50px;

z-index:8;

}

.shy {

position:absolute;

width:0px;

height:0px;

border-radius:100%;

opacity:0;

box-shadow: 0px 0px 40px 20px red;

z-index:8;

left:35px;

top:160px;

animation: shy 10s linear .2s infinite;

}

.shy.right {

left:170px;

top:180px;

}

@keyframes eyebroani {

0% {margin-top:auto}

10% {margin-top:-10px}

20% {margin-top:auto}

30% {margin-top:-10px}

40% {margin-top:auto}

100% {margin-top:auto}

}

@keyframes shy {

0% {opacity:0}

10% {opacity:0.2}

90% {opacity:0.2}

100% {opacity:0}

}

@keyframes close-eye {

0% {

height: 40px;

margin-top: auto;

overflow: auto;

}

5% {

height: 2px;

margin-top: 20px;

overflow: hidden;

}

5.1% {

height: 40px;

margin-top:0;

Answered by Qaidjohar
0

Answer:

Step-by-step explanation:

The length of all sides are same and the length of both the diagonals are same, therefore the given figure is a square.

The vertices of polygon are A(4,3) , B(6,4) , C(5,6) and D(3,5).

The distance formula is

d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AB=\sqrt{(4-6)^2+(3-4)^2}=\sqrt{5}

BC=\sqrt{(6-5)^2+(4-6)^2}=\sqrt{5}

CD=\sqrt{(5-3)^2+(6-5)^2}=\sqrt{5}

AD=\sqrt{(4-3)^2+(3-5)^2}=\sqrt{5}

The length of all sides are same.

The length of diagonals are

The length of diagonals are

AC=\sqrt{(4-5)^2+(3-6)^2}=\sqrt{10}

BD=\sqrt{(6-3)^2+(4-5)^2}=\sqrt{10}

The length of both the diagonals are same.

Since the length of all sides are same and the length of both the diagonals are same, therefore the given figure is a square.

Similar questions