Show that the points (7.10), (-2, 5) and (3, - 4) are vertices of an
isosceles right triangle.
Answers
HEY! YAH AAJ KE PAPER KA QUESTION HAI......
APPLY DISTANCE FORMULA
name the points as A(7,10), B (-2,5) C (3,-4)
AB =√106 , BC=√106 , AC = √212
BUT PLEASE DO CALCULATE BECAUSE..... I GUESSED..... OKAY.... HOPE YOU LIKE IT...
AT THE LAST AB = BC AND HENCE IT IS AN ISOSCELES RIGHT TRIANGLE.
Answer:
Hey Buddy here's ur answer
Let the given points be A(7, 10), B(-2, 5) and C(3, -4), then
AB2 = (-2 - 7)² + (5 - 10)²
⇒ AB2 = (-9)² + (-5)²
⇒ AB2 = 81 + 25 = 106
BC2 = {3 - (-2)}² + (-4 -5)²
⇒ BC2 = (3 + 2)² + (-4 - 5)²
⇒ BC2 = (5)² + (-9)²
⇒ BC2 = 25 + 81 = 106
and CA2 = (7 - 3)2 = {10 - (-4)}²
⇒ CA2 = (4)² + (10 + 4)²
=>CA2 = (4)²+ (14)2 = 16 + 196 = 212
Now,
AB2 + BC2 = 106 + 106
=> AB2 + BC2 = 212 = CA²
∴ ∠B = 90°
[By converse of Pythagoras theorem]
and AB = BC
Hence, A, B and C are the vertices of isosceles right angle triangle.