Math, asked by rtxghost05, 3 months ago

Show that the points A(7, 10), B(-2, 5) and c(3, -4) are the vertices of an isosceles right triangle

Answers

Answered by firefistteam
0

Answer:

Given points are A(7,10),B(−2,5) and C(3,−4)

AB  

2

=(x  

2

−x  

1

)  

2

+(y  

2

−y  

1

)  

2

 

=(−2−7)  

2

+(5−10)  

2

=(−9)  

2

+(−5)  

2

 

=81+25=106

BC  

2

=(3+2)  

2

+(−4−5)  

2

=(5)  

2

+(−9)  

2

 

=25+81=106

CA  

2

=(7−3)  

2

+(10+4)  

2

=(4)  

2

+(14)  

2

 

=16+196=212

AB  

2

+BC  

2

=106

⇒AB=BC

From above, two of the sides are of equal length, so triangle ABC is an isosceles triangle.

Check for: Isosceles right triangle

Sum of square of two sides = Square of third side

AB  

2

+BC  

2

=106+106=212=CA  

2

 

Hence given points are vertices of an isosceles right triangle.

Step-by-step explanation:

Similar questions