Math, asked by narebdrmodi6964, 11 months ago

Show that the points With position vectors-2a+3b+5c,a+2b +3c ,7a-c are collinear position vectors _

Answers

Answered by MaheswariS
14

\text{Let the given points be A,B and C}

\text{Let O be the origin }

\text{Then, }

\overrightarrow{OA}=-2\overrightarrow{a}+3\overrightarrow{b}+5\overrightarrow{c}

\overrightarrow{OB}=\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}

\overrightarrow{OC}=7\overrightarrow{a}-\overrightarrow{c}

\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}

=3\overrightarrow{a}-\overrightarrow{b}-2\overrightarrow{c}

\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}

=9\overrightarrow{a}-3\overrightarrow{b}-6\overrightarrow{c}

=3(3a\overrightarrow{a}-\overrightarrow{b}-2\overrightarrow{c})

=3\overrightarrow{AB}

\implies\bf\overrightarrow{AC}=3\overrightarrow{AB}

\overrightarrow{AB}\text{ and }\overrightarrow{AC}\text{ are parallel }

\text{But A is the common point }

\text{Hence, they are collinear }

Answered by amirgraveiens
5

Proved below.

Step-by-step explanation:

Given:

Let us assume that O be the origin and P, Q, R be the position vectors of the given points.

\vec{OP}=-2\vec {a}+3\vec {b}+5\vec {c}

\vec {OQ}=\vec {a}+2\vec {b}+3\vec {c}

\vec {OR}=7\vec {a}-\vec {c}

Then \vec {PQ}=\vec {OQ}-\vec {OP}

\vec {PQ}=\vec {a}+2\vec {b}+3\vec {c}-[-2\vec {a}+3\vec {b}+5\vec {c}]

\vec {PQ}=\vec {a}+2\vec {b}+3\vec {c}+2\vec {a}-3\vec {b}-5\vec {c}

\vec{PQ}=3\vec{a}-\vec{b}-2\vec{c}                       [1]

\vec{QR}=\vec{OR}-\vec{OQ}\\

\vec{QR}=7\vec{a}-\vec{c}-[\vec{a}+2\vec{b}+3\vec{c}]

\vec{QR}=7\vec{a}-\vec{c}-\vec{a}-2\vec{b}-3\vec{c}

\vec{QR}=6\vec{a}-2\vec{b}-4\vec{c}

\vec{QR}=2[3\vec{a}-\vec{b}-2\vec{c}]

\vec{QR}=2[\vec{PQ}]                      [from (1)]

Hence the points P, Q, R are collinear.

Similar questions