show that the relation "is congruent to",on the set of all triangles in a plane is an equivalence relation
plz answer me correctly
Answers
Answer:
Step-by-step explanation:
R : {(Δ1 , Δ2)} ; Δ1 ≈ Δ2 (Δ1 , Δ2 € a single plane)
(i) Reflexive : (a,a) € R
Δ1 ≈ Δ2 therefore, (Δ1 , Δ2) € R
=> R is reflexive
(ii) Symmetric : (a,b) € R ; (b,a) € R
Let (Δ1 , Δ2) € R
To prove : (Δ2 , Δ1) € R ; Δ2 ≈ Δ1
Δ1 ≈ Δ2 so therefore, Δ2 ≈ Δ1
Therefore, (Δ2 , Δ1) € R
=> R is symmetric
(iii) Transitive (a,b) € R (b,c) € R
(a,c) € R
Let (Δ1 , Δ2) € R , (Δ2 , Δ3) € R
(Δ3 , Δ1) € R
To prove : (Δ1 , Δ3) € R
Proof : Δ1 ≈ Δ2 ------- (1)
Δ2≈Δ3 --------(3)
From (1) and (2)
Δ1≈Δ2≈Δ3
Δ1≈Δ3
=> R is transitivity
mArk me brainliest
cheyyochu gaaa
:
R : {(Δ1 , Δ2)} ; Δ1 ≈ Δ2 (Δ1 , Δ2 € a single plane)
(i) Reflexive : (a,a) € R
Δ1 ≈ Δ2 therefore, (Δ1 , Δ2) € R
=> R is reflexive
(ii) Symmetric : (a,b) € R ; (b,a) € R
Let (Δ1 , Δ2) € R
To prove : (Δ2 , Δ1) € R ; Δ2 ≈ Δ1
Δ1 ≈ Δ2 so therefore, Δ2 ≈ Δ1
Therefore, (Δ2 , Δ1) € R
=> R is symmetric
(iii) Transitive (a,b) € R (b,c) € R
(a,c) € R
Let (Δ1 , Δ2) € R , (Δ2 , Δ3) € R
(Δ3 , Δ1) € R
To prove : (Δ1 , Δ3) € R
Proof : Δ1 ≈ Δ2 ------- (1)
Δ2≈Δ3 --------(3)
From (1) and (2)
Δ1≈Δ2≈Δ3
Δ1≈Δ3
=> R is transitivity