Show that the roots of the equation x^2 + 2 ( a + b ) x + 2 ( a^2 + b^2
) = 0
are unreal.
Answers
Answered by
1
Step-by-step explanation:
For unreal roots D<0
b
2
−4ac<0
B=2(a+b) C=2(a
2
+b
2
)
B
2
−4AC<0 A=1
4(a+b)
2
−4×1×2(a
2
+b
2
)
4a
2
+4b
2
+8ab−8a
2
−8b
2
8ab−4a
2
−4b
2
=−4(a−b)
2
<0
Hence roots are unreal.
Answered by
5
Answer:-
Given:-
- The equation x² + 2 ( a + b ) x + 2 ( a² + b² ) = 0
To find:-
- The roots of the equation are unreal
Solution:-
Here,
For unreal roots D < 0
Use quadratic formula
b² - 4ac < 0
b = 2 ( a + b )
c = 2 ( a² + b² )
b² - 4ac < 0
⇒4 ( a + b )² - 4 × 1 × 2 ( a² + b² )
⇒4a² + 4b² + 8ab - 8a² - 8b²
⇒8ab - 4a² - 4b²
⇒ - 4 ( a - b )² < 0
Therefore, the roots are unreal
Similar questions
History,
3 months ago
Science,
3 months ago
Social Sciences,
7 months ago
Physics,
1 year ago
Math,
1 year ago