Math, asked by sujitrout63, 1 day ago

show that the set {1,-1,i,-i} is an abelian finite group of order 4 under multiplication?​

Answers

Answered by MaheswariS
14

\underline{\textbf{Given:}}

\mathsf{\{1,-1,i,-i\}}

\underline{\textbf{To prove:}}

\mathsf{\{1,-1,i,-i\}}\;\textsf{is an abelian group under multiplication}

\underline{\textbf{Solution:}}

\mathsf{G=\{1,-1,i,-i\}}

\textsf{First we form a cayley's table}

\left|\begin{array}{|c|cccc|}\cline{1-5}.&1&-1&i&-i\\\cline{1-5}1&1&-1&i&-i\\-1&-1&1&-i&i\\i&i&-i&-1&1\\-i&-i&i&1&-1\\\cline{1-5}\end{array}\right|

\textsf{(i) All the elements in the cayley's table are elements of G}

\implies\textsf{Closure axiom is true}

\textsf{(ii) Usual multiplication is always associative}

\implies\textsf{Associative axiom is true}

\textsf{(iii) Clearly, 1 is the identity element and  satisfies identity axiom}

\implies\textsf{Identity axiom is true}

\textsf{(iv)}

\textsf{Inverse of 1 is 1}

\textsf{Inverse of -1 is -1}

\textsf{Inverse of i is -i}

\textsf{Inverse of -i is i}

\implies\textsf{Inverse axiom is true}

\textsf{(v) Usual multiplication is always commutative}

\therefore\textbf{G is an abelian group under multiplication}

Answered by anushkamishra2005ftp
0

Answer:

Step-by-step explanation:

Similar questions