show that the square of any positive integer cannot be of the form 5q+2 and 5q+3 for any integer q
Answers
Answered by
26
Consider a be any positive integer.
By Euclid's division lemma, a = bn + r where b = 5
⇒ a = 5n + r
So that r can be any of 0, 1, 2, 3, 4
∴ a = 5n when r = 0
a = 5n + 1 when r = 1
a = 5n + 2 when r = 2
a = 5n + 3 when r = 3
a = 5n + 4 when r = 4
So, "a" is any positive integer in the form of 5n, 5n + 1 , 5n + 2 , 5n + 3 , 5n + 4 for some integer n.
Case i :
a = 5n
⇒ a 2 = (5n)2 = 25n 2
⇒ a 2 = 5(5n 2)
= 5q , where q = 5n 2
Case ii :
a = 5n + 1
⇒ a 2 = (5n + 1)2 = 25n 2 + 10 n + 1
⇒ a 2 = 5 (5n 2 + 2n) + 1
= 5q + 1, where q = 5n 2 + 2n .
Case iii :
a = 5n + 2
⇒ a 2 = (5n + 2)2
= 25n 2 + 20n +4
= 25n 2 + 20n +4
= 5 (5n 2 + 4n) + 4
= 5q + 4 where q = 5n 2 + 4n
Case iv:
a = 5n + 3
⇒ a 2 = (5n + 3)2 = 25n 2 + 30n + 9
= 25n 2 + 30n + 5 + 4
= 5 (5n 2 + 6n + 1) + 4
= 5q + 4 where q = 5n 2 + 6n + 1
Case v:
a = 5n + 4
⇒ a 2 = (5n + 4)2 = 25n 2 + 40n + 16
= 25n 2 + 40n + 15 + 1
= 5 (5n 2 + 8n + 3) + 1
= 5q + 1 where q = 5n 2 + 8n + 3
From all these cases, it is clear that square of any positive integer can not be of the form 5q + 2 or 5q + 3 for any integer q.
Hope it help you...!
By Euclid's division lemma, a = bn + r where b = 5
⇒ a = 5n + r
So that r can be any of 0, 1, 2, 3, 4
∴ a = 5n when r = 0
a = 5n + 1 when r = 1
a = 5n + 2 when r = 2
a = 5n + 3 when r = 3
a = 5n + 4 when r = 4
So, "a" is any positive integer in the form of 5n, 5n + 1 , 5n + 2 , 5n + 3 , 5n + 4 for some integer n.
Case i :
a = 5n
⇒ a 2 = (5n)2 = 25n 2
⇒ a 2 = 5(5n 2)
= 5q , where q = 5n 2
Case ii :
a = 5n + 1
⇒ a 2 = (5n + 1)2 = 25n 2 + 10 n + 1
⇒ a 2 = 5 (5n 2 + 2n) + 1
= 5q + 1, where q = 5n 2 + 2n .
Case iii :
a = 5n + 2
⇒ a 2 = (5n + 2)2
= 25n 2 + 20n +4
= 25n 2 + 20n +4
= 5 (5n 2 + 4n) + 4
= 5q + 4 where q = 5n 2 + 4n
Case iv:
a = 5n + 3
⇒ a 2 = (5n + 3)2 = 25n 2 + 30n + 9
= 25n 2 + 30n + 5 + 4
= 5 (5n 2 + 6n + 1) + 4
= 5q + 4 where q = 5n 2 + 6n + 1
Case v:
a = 5n + 4
⇒ a 2 = (5n + 4)2 = 25n 2 + 40n + 16
= 25n 2 + 40n + 15 + 1
= 5 (5n 2 + 8n + 3) + 1
= 5q + 1 where q = 5n 2 + 8n + 3
From all these cases, it is clear that square of any positive integer can not be of the form 5q + 2 or 5q + 3 for any integer q.
Hope it help you...!
Similar questions