Show that the square of any positive odd integer is in the form of 8m+1 for some integer m
Answers
Answered by
18
let a be any positive integer
b=4(we can take 4)
by Euclid algorithm
a=bq+r
the common factors are 0 1 2 3 4
for 0,
4q(even)
4q+1,it is not find so it is odd
4q+2=q=4/2=2 (even)
4q+3=odd
4q+4=even
b=4(we can take 4)
by Euclid algorithm
a=bq+r
the common factors are 0 1 2 3 4
for 0,
4q(even)
4q+1,it is not find so it is odd
4q+2=q=4/2=2 (even)
4q+3=odd
4q+4=even
Answered by
14
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2, 3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
(8q)^2
=> 64q^2
8(8q^2)
= let 2q^2 be m
8m
case 2.
r=1
a=bq+r
(8q+1)^2
(8q)^2+2*8q*1+(1)^2
64q^2+16q+1
8(8q^2+2q)+1.
let 8q^2+2q be. m
8m+1
case 3.
r=2
(8q+2)^2
(8q)^2+2*8q*2+(2)^2
64q^2+32q+4
8(8q^2+4q)+4
let 8q^2+4q be m
8m+4
case4.
r=3
(8q+3)^2
(8q)^2+2*8q*3+(3)^2
64q^2+48q+9
64q^2+48q+8+1
8(8q^2+6q+1)+1
let 8q^2+6q+1 be m
8m+1
case 5.
r=4
(8q+4)^2
64q^2+64q+16
8(8q^2+8q+2)
let 8q^2+8q+2 be m
8m
case 6
r=5
(8q+5)^2
64q^2+80q+25
64q^2+80q+24+1
8(8q^2+10q+3)+1
let 8q^2+10q+3 be m
8m+1
case 7
r=6
(8q+6)^2
64q^2+96q+36
64q^2+96q+32+4
8(8q^2+12q+4)+4
let 8q^2+12q+4 be m..
8m+4
case8.
r=7
(8q+7)^2
64q^2+112q+49
64q^2+112q+48+1
8(8q^2+14q+6)+1
let 8q^2+14q+6 be m
8m+1
from above it is proved.
Similar questions