Math, asked by pranavi2166, 4 months ago

Show that the sum of roots of a quadratic equation ax²+ bx+c=0(a = 0) is -b/a​

Answers

Answered by prince5132
22

GIVEN :-

A quadratic equation ax² + bx + c = 0.

TO SHOW :-

Sum of product of the quadratic equation id -b/a [ α + β = -b/a ]

PROOF :-

Let us considered that a polynomial ax² + bx + c = 0 has descriminant ( D = b² - 4ac ) and the roots α and β i.e,

 \\  : \implies \displaystyle \sf \:  \alpha  =  \frac{ - b +  \sqrt{b ^{2} - 4ac } }{2a}  \\  \\  \\

: \implies \displaystyle \sf \:  \beta  =  \frac{ - b -  \sqrt{b ^{2}  - 4ac} }{2a}  \\

Now according to the question we have to find the value of α + β,

 \\ : \implies \displaystyle \sf \:   \alpha  +  \beta  = \frac{ - b +  \sqrt{b ^{2} - 4ac } }{2a}   + \frac{ - b  -  \sqrt{b ^{2} - 4ac } }{2a}   \\  \\  \\

 : \implies \displaystyle \sf \:   \alpha  +  \beta  = \frac{ - b  +  \sqrt{b ^{2}  - 4ac}  +  ( - b) -  \sqrt{b ^{2} - 4ac } }{2a}   \\  \\  \\

: \implies \displaystyle \sf \:   \alpha  +  \beta  = \frac{ - b  +  \sqrt{b ^{2}  - 4ac}  - b-  \sqrt{b ^{2} - 4ac } }{2a}   \\  \\  \\

: \implies \displaystyle \sf \:   \alpha  +  \beta  =   \frac{ - b - b}{2a}  \\  \\  \\

: \implies \displaystyle \sf \:   \alpha  +  \beta  =  \frac{ - 2b}{2a}  \\  \\  \\

: \implies  \underline{ \boxed{\displaystyle \sf \:   \alpha  +  \beta  =  \frac{ - b}{a} }} \\

Hence Proved.

Answered by Anonymous
88

Given:-

  • Quadratic eq. = ax² + bx + c = 0

Show That:-

  • Sum of its roots is -b/a

Solution:-

Let, α and β be zeroes of quadratic eq. ax² + bx +c = 0

Thus, by using quadratic formula:-

 \huge{ \underline{\boxed{\sf\dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}}}}

 \implies\sf \alpha = \dfrac{ - b  +  \sqrt{ {b}^{2}  - 4ac} }{2a} \\

 \implies\sf \beta = \dfrac{ - b   -   \sqrt{ {b}^{2}  - 4ac} }{2a} \\

Now, sum of zeroes:-

 \sf \dashrightarrow \alpha +  \beta = \dfrac{ - b  +  \sqrt{ {b}^{2}  - 4ac} }{2a} +  \dfrac{ - b   -  \sqrt{ {b}^{2}  - 4ac} }{2a}   \\  \\

 Taking\:L.C.M

 \\ \sf \dashrightarrow \alpha +  \beta = \dfrac{ - b  +  \sqrt{ {b}^{2}  - 4ac} + - b   -  \sqrt{ {b}^{2}  - 4ac}  }{2a}   \\  \\

\sf \dashrightarrow \alpha +  \beta = \dfrac{ - b  \cancel{ + \sqrt{ {b}^{2}  - 4ac}} + - b    \cancel{-  \sqrt{ {b}^{2}  - 4ac}}  }{2a}   \\  \\

\sf \dashrightarrow \alpha +  \beta = \dfrac{ - 2b }{2a}   \\  \\

\sf \dashrightarrow \alpha +  \beta = \dfrac{ -  \not{2}b }{ \not{2}a}   \\  \\

\sf \dashrightarrow \alpha +  \beta = \dfrac{ - b }{a}   \\  \\

 \small{\sf \therefore \underline{\alpha +  \beta = \dfrac{ - b }{a}}}

Hence, Sum of roots of quadratic eq. ax² + bx + c = 0 is -b/a

Similar questions