Math, asked by gautam57, 1 year ago

show that the three points ( 1,1) , ( root3, root -3) and ( -1, -1)are the vertices of an equilateral triangle.

Answers

Answered by yash434
39
using distance formula
Attachments:
Answered by wifilethbridge
20

Answer:

AB=BC=AC

Step-by-step explanation:

A= (1,1)

B=(\sqrt{3},-\sqrt{3})

C=(-1,-1)

To find AB use distance formula :

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(1,1)

(x_2,y_2)=(\sqrt{3},-\sqrt{3})

Substitute the values in the formula :

AB=\sqrt{(\sqrt{3}-1)^2+(-\sqrt{3}-1)^2}

AB=2.828

To Find BC

(x_1,y_1)=(\sqrt{3},-\sqrt{3})

(x_2,y_2)=(-1,-1)

Substitute the values in the formula :

BC=\sqrt{(-1-\sqrt{3})^2+(-1+\sqrt{3})^2}

BC=2.828

To Find AC

(x_1,y_1)= (1,1)

(x_2,y_2)= (-1,-1)

Substitute the values in the formula :

AC=\sqrt{(-1-1)^2+(-1-1)^2}

AC=\sqrt{(-2)^2+(-2)^2}

AC=\sqrt{4+4}

AC=\sqrt{8}

AC=2.828

AB=BC=AC

Since all the sides of the triangle are equal .

So, the given three points are the vertices of equilateral triangle.

Similar questions