Science, asked by purnatachakma93, 5 months ago

Show that the total mechanical energy for a freely falling body above the height .
Height (x) in constant​

Answers

Answered by Toxicbanda
6

Question:

Show that the total mechanical energy for a freely falling body above the height is conserved. Height (x) in constant​.

Answer:

  • Read explanation.

Explanation:

Mechanical Energy:

  • It is the sum of kinetic energy as well as potential energy.
  • v = K.E + P.E
  • {\sf{v=\dfrac{1}{2}\;mv^{2}+mgh}}

Proof:

Ps : To better understand please refers to attachment for diagram.

At point "A",

\implies{\sf{(K.E)_{A}=\dfrac{1}{2}mv^{2}_{A}=0}}

\implies{\sf{(P.E)_{A}=mgh}}

{\sf{So,\;(M.E)_{A}=(K.E)_{A}+(P.E)_{A}}}

\implies{\sf{\;(M.E)_{A}=0+mgh}}

\implies{\boxed{\sf{\;(M.E)_{A}=mgh\;\;\;\;..(1)}}}

At point "B",

\implies{\sf{(K.E)_{B}=\dfrac{1}{2}mv^{2}_{B}\;\;\;\;..(2)}}

From, 3rd equation of motion.

\implies{\sf{v^{2}=u^{2}+2as}}

\implies{\sf{v^{2}_{B}=0+2gx\;\;\;\;\;[h=x\;and\;a\;repleaced\;by\;g]}}

\implies{\sf{v^{2}_{B}=2gx}}

Now, Put the value of \sf{V^{2}_{B}} in equation (2).

\implies{\sf{(K.E)_{B}=\dfrac{1}{2}m(2gx)}}

\implies{\sf{(K.E)_{B}=mgx}}

\implies{\sf{(P.E)_{B}=mg(h-x)}}

{\sf{So,\;(M.E)_{B}=(K.E)_{A}+(P.E)_{A}}}

\implies{\sf{\;(M.E)_{B}=mgx+mg(h-x)}}

\implies{\sf{\;(M.E)_{B}=mgx+mgh-mgx}}

\implies{\boxed{\sf{\;(M.E)_{B}=mgh\;\;\;\;..(3)}}}

At point "C",

\implies{\sf{(K.E)_{C}=\dfrac{1}{2}mv^{2}_{C}\;\;\;\;..(4)}}

From, 3rd equation of motion.

\implies{\sf{V^{2}_{c} =u^{2}+2gs}}

\implies{\sf{V^{2}_{c} =0+2gh}}

Now, put the value of \sf{v^{2}_{c}} in equation (4),

\implies{\sf{(K.E)_{C}=\dfrac{1}{2}m(2gh)}}

\implies{\sf{(K.E)_{C}=mgh}}

\implies{\sf{(P.E)_{C}=mg(0)=0}}

{\sf{So,\;(M.E)_{C}=(K.E)_{A}+(P.E)_{A}}}

\implies{\sf{\;(M.E)_{B}=mgh+0}}

\implies{\boxed{\sf{\;(M.E)_{C}=mgh\;\;\;\;..(5)}}}

Hence, From equation (1), (3) and (5) we may conclude that the energy that the object remains conserve during free fall of the object.

Attachments:

purnatachakma93: thanks❤
Similar questions