Math, asked by Prashantbandal, 1 year ago

Show that under root 1- sin Tetha/1+ sin tetha = Sec tetha - tan Tetha

Answers

Answered by Rajusingh45
6
Hello friend

_____________________________

here is your answer!!!!

===>
 \sqrt{ \frac{1 - sin \: tetha}{1 +  \sin \: tetha \: } }  \times  \frac{1 - sin \: tetha \: }{1 - sin \: tetha}  \\  \\  =  \sqrt{ \frac{(1 - sin \: tetha \:) {}^{2} }{1 - sin {}^{2}  \: tetha} }  \\  \\  =   \sqrt{ \frac{(1 - sin \: tetha) {}^{2} }{cos {}^{2}  \: tetha} }  \\  \\  =  \frac{1 - sin \: tetha}{cos \: tetha}  \\  \\  =  \frac{1}{cos \: tetha}  -  \frac{sin \: tetha}{cos \: tetha}  \\  \\  = sec \: tetha \:  - tan \: tetha
I hope this will helps you...

Thanks..

:) :)

Prashantbandal: thanks
Rajusingh45: ^_^
Similar questions