Math, asked by tiwarianush69, 8 days ago

Show that v(x, y) = x2 + 2y - y2 is harmonic conjugate of u = = 2x – 2xy.​

Answers

Answered by esuryasinghmohan
1

Step-by-step explanation:

given :

  • Show that v(x, y) = x2 + 2y - y2 is harmonic conjugate of u = = 2x – 2xy.

to find :

  • conjugate of u = = 2x – 2xy.

solution :

  • 2xy is the answer

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given functions are

\rm :\longmapsto\:v(x,y) =  {x}^{2} + 2y -  {y}^{2}

and

\rm :\longmapsto\:u(x,y) =  2x - 2xy

We know

If u and v are two functions then v is said to be Harmonic Conjugate of u, iff their first order partial derivatives satisfied Cauchy Reimann Equations.

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{\partial u}{\partial x} =  \frac{\partial v}{\partial y}  \: }}}

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{\partial u}{\partial y} =  -  \:  \frac{\partial v}{\partial x}  \: }}}

So, Consider

\rm :\longmapsto\:v(x,y) =  {x}^{2} + 2y -  {y}^{2}

Differentiating partially w. r. t. x and y, we get

\rm :\longmapsto\:\dfrac{\partial v}{\partial x}  = 2x

and

\rm :\longmapsto\:\dfrac{\partial v}{\partial y}  = 2 - 2y

Now, Consider

\rm :\longmapsto\:u(x,y) =  2x - 2xy

On differentiating partially w. r. t. x and y, we get

\rm :\longmapsto\:\dfrac{\partial u}{\partial x}  = 2 - 2y

and

\rm :\longmapsto\:\dfrac{\partial u}{\partial y}  =  - 2x

Hence, we concluded that

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{\partial u}{\partial x} =  \frac{\partial v}{\partial y}  \: }}}

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{\partial u}{\partial y} =  -  \:  \frac{\partial v}{\partial x}  \: }}}

Hence,

  • v is Harmonic Conjugate of u.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions