Show that w and q for an arbitrary mechanically reversible non flow process are given by
Answers
Answered by
1
is really a mathematical exercise on integration by parts.
W=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPVW=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPV
Q=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdPQ=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdP
hope helps ☺️
W=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPVW=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPV
Q=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdPQ=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdP
hope helps ☺️
Answered by
0
This is really a mathematical exercise on integration by parts.
W=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPVW=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPV
Q=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdPQ=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdP
W=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPVW=−∫PdV=−(ΔPV−∫VdP)=∫VdP−ΔPV
Q=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdPQ=U−W=ΔU−(∫VdP−ΔPV)=ΔU+ΔPV−∫VdP=ΔH−∫VdP
Similar questions