Math, asked by cathrinewilli, 1 year ago

show that x^a (b-c)/x^b (a-c) ÷ (x^b/x^a)^c = 1​

Answers

Answered by skh2
5

According to the question we have :-

  \frac{{x}^{a(b - c)}}{ {x}^{b(a - c)}} \div  { (\frac{ {x}^{b} }{ {x}^{a} })}^{c} \\

To prove :-

The equation is equal to 1

Proof :-

\frac{{x}^{a(b - c)}}{ {x}^{b(a - c)}} \div  { (\frac{ {x}^{b} }{ {x}^{a} })}^{c} \\  \\  \\ =  \frac{ {x}^{ab - ac} }{ {x}^{ab - bc} }\div  { (\frac{ {x}^{b} }{ {x}^{a} })}^{c} \\  \\  \\ =\frac{ {x}^{ab - ac} }{ {x}^{ab - bc} } \times {(\frac{ {x}^{a} }{ {x}^{b} })}^{c} \\  \\  \\ =\frac{ {x}^{ab - ac} }{ {x}^{ab - bc} } \times  \frac{ {x}^{ac} }{ {x}^{bc} } \\  \\  \\  \\ =  \frac{ {x}^{(ab - ac + ac)} }{ {x}^{(ab - bc + bc)} } \\  \\  \\ =  \frac{ {x}^{ab} }{ {x}^{ab} } \\  \\  \\ = {x}^{ab - ab} \\  \\  \\ =  {x}^{0} \\  \\  \\ = 1

Hence,

\frac{{x}^{a(b - c)}}{ {x}^{b(a - c)}} \div  { (\frac{ {x}^{b} }{ {x}^{a} })}^{c} = 1 \\

KEY POINTS TO REMEMBER :-

☸️ aⁿ * aⁿ = a²ⁿ

☸️ (aⁿ)ⁿ = aⁿ*ⁿ

☸️ a^0 = 1

Similar questions