Math, asked by kaviya87, 2 months ago

show that (x^a/x^b)^a+b (x^b/x^c)^b+c (x^c/x^a)^c+a = 1

Answers

Answered by Mythili23092003
0

Answer:

I think it must be helpful to you

Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{ \bigg( \frac{ {x}^{a} }{ {x}^{b} } \bigg )^{a + b}  \times  \bigg( \frac{ {x}^{b} }{ {x}^{c} } \bigg)^{b + c}   \times  \bigg(  \frac{ {x}^{c} }{ {x}^{a}} \bigg) ^{c + a}   } \\

 \bf \underline{To \:show-} \\

\textsf{LHS = RHS}

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \sf{ LHS=\bigg( \frac{ {x}^{a} }{ {x}^{b} } \bigg )^{a + b}  \times  \bigg( \frac{ {x}^{b} }{ {x}^{c} } \bigg)^{b + c}   \times  \bigg(  \frac{ {x}^{c} }{ {x}^{a}} \bigg) ^{c + a}   } \\

 \:  \:  \:  \:  \:  \sf{ = \big( {x}^{a - b} \big) ^{a + b}   \times  \big( {x}^{b - c}  \big) ^{b + c}  \times  \big( {x}^{c - a} \big {)}^{c + a}   } \\

\:  \:  \:  \:  \:  \sf{ = {x}^{ {a}^{2}  -  {b}^{2}  }  \times  {x}^{ {b}^{2} -  {c}^{2}  }    \times  {x}^{ {c}^{2}  -  {a}^{2} }  } \\

\:  \:  \:  \:  \:  \sf{ =  {x}^{ {a}^{2}  -  {b}^{2}  +  {b}^{2}  -  {c}^{2}   +  {c}^{2} -  {a}^{2}  } } \\

\:  \:  \:  \:  \:  \sf{ =  {x}^{0} } \\

\:  \:  \:  \:  \:  \sf{ = 1 =RHS } \\

 \bf \underline{Hence\: proved.} \\

Similar questions