show the energy level diagram for He2 and He2 + molecule and ion respectively
Answers
Answered by
1
Molecular orbitals of H2 and He2
The procedure can be introduced by considering the H2 molecule. Its molecular orbitals are constructed from the valence-shell orbitals of each hydrogen atom, which are the 1s orbitals of the atoms. Two superpositions of these two orbitals can be formed, one by summing the orbitals and the other by taking their difference. In the former, the amplitudes of the two atomic orbitals interfere constructively with one another, and there is consequently an enhancedamplitude between the two nuclei. As a result, any electron that occupies this molecular orbital has a high probability of being found between the two nuclei, and its energy is lower than when it is confined to either atomic orbital alone. This combination of atomic orbitals is therefore called a bonding orbital. Moreover, because it has cylindrical symmetry about the internuclear axis, it is designated a σ orbital and labeled 1σ.
The MO formed by taking the difference of the two 1s orbitals also has cylindrical symmetry and hence is also a σ orbital. Taking the difference of the two atomic orbitals, however, results in destructive interference in the internuclear region where the amplitude of one orbital is subtracted from the other. This destructive interference is complete on a plane midway between the nuclei, and hence there is a nodal plane—i.e., a plane of zero amplitude—between the nuclei. Any electron that occupies this orbital is excluded from the internuclear region, and its energy is higher than it would be if it occupied either atomic orbital. The orbital arising in this way is therefore called an antibonding orbital; it is often denoted σ* (and referred to as “sigma star”) or, because it is the second of the two σ orbitals, 2σ.
The procedure can be introduced by considering the H2 molecule. Its molecular orbitals are constructed from the valence-shell orbitals of each hydrogen atom, which are the 1s orbitals of the atoms. Two superpositions of these two orbitals can be formed, one by summing the orbitals and the other by taking their difference. In the former, the amplitudes of the two atomic orbitals interfere constructively with one another, and there is consequently an enhancedamplitude between the two nuclei. As a result, any electron that occupies this molecular orbital has a high probability of being found between the two nuclei, and its energy is lower than when it is confined to either atomic orbital alone. This combination of atomic orbitals is therefore called a bonding orbital. Moreover, because it has cylindrical symmetry about the internuclear axis, it is designated a σ orbital and labeled 1σ.
The MO formed by taking the difference of the two 1s orbitals also has cylindrical symmetry and hence is also a σ orbital. Taking the difference of the two atomic orbitals, however, results in destructive interference in the internuclear region where the amplitude of one orbital is subtracted from the other. This destructive interference is complete on a plane midway between the nuclei, and hence there is a nodal plane—i.e., a plane of zero amplitude—between the nuclei. Any electron that occupies this orbital is excluded from the internuclear region, and its energy is higher than it would be if it occupied either atomic orbital. The orbital arising in this way is therefore called an antibonding orbital; it is often denoted σ* (and referred to as “sigma star”) or, because it is the second of the two σ orbitals, 2σ.
Similar questions