side of an equilater triangle is
![\sqrt[12]{3} \sqrt[12]{3}](https://tex.z-dn.net/?f=+%5Csqrt%5B12%5D%7B3%7D+)
then the area is
Answers
Answered by
0
➡HERE IS YOUR ANSWER⬇
♧♧FORMULA♧♧
Area of an equilateral triangle

♧♧SOLUTION♧♧
Given that :
![side \: \: = \: \: \sqrt[12]{3} \: \: units \\ \\ \: \: \: \: \: \: \: \: \: \: \: = {3}^{ \frac{1}{12} } \: \: units side \: \: = \: \: \sqrt[12]{3} \: \: units \\ \\ \: \: \: \: \: \: \: \: \: \: \: = {3}^{ \frac{1}{12} } \: \: units](https://tex.z-dn.net/?f=side+%5C%3A++%5C%3A++%3D++%5C%3A++%5C%3A++%5Csqrt%5B12%5D%7B3%7D++%5C%3A++%5C%3A+units+%5C%5C+++%5C%5C++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+%3D++%7B3%7D%5E%7B+%5Cfrac%7B1%7D%7B12%7D+%7D++%5C%3A++%5C%3A+units)
So, the area of the triangle

⬆HOPE THIS HELPS YOU⬅
♧♧FORMULA♧♧
Area of an equilateral triangle
♧♧SOLUTION♧♧
Given that :
So, the area of the triangle
⬆HOPE THIS HELPS YOU⬅
Similar questions
Political Science,
9 months ago
Biology,
9 months ago
Social Sciences,
1 year ago
Hindi,
1 year ago
Math,
1 year ago