Math, asked by Nnnnnn11, 1 year ago

side of an equilater triangle is
 \sqrt[12]{3}
then the area is

Answers

Answered by Swarup1998
0
➡HERE IS YOUR ANSWER⬇

♧♧FORMULA♧♧

Area of an equilateral triangle

 =  \frac{ \sqrt{3} }{4}  \times  {(side)}^{2}

♧♧SOLUTION♧♧

Given that :

side \:  \:  =  \:  \:  \sqrt[12]{3}  \:  \: units \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {3}^{ \frac{1}{12} }  \:  \: units

So, the area of the triangle

 =  \frac{ \sqrt{3} }{4}  \times  {( {3}^{ \frac{1}{12} }) }^{2}  \\  \\  =  \frac{ \sqrt{3} }{4}  \times  {3}^{ \frac{1}{6} }  \\  \\  =  \frac{ {3}^{ \frac{1}{2} }  \times  {3}^{ \frac{1}{6} } }{4}  \\  \\  =  \frac{ {3}^{ \frac{2}{3} } }{4}  \\  \\  =  0.416 \:  \:  {unit}^{2}

⬆HOPE THIS HELPS YOU⬅
Similar questions