Math, asked by dmoolya2005, 2 months ago

side of an equilateral
DABC is 8cm. Find the
sides of an equilatesal
PQR whose area is
twice the area of the
first.​

Attachments:

Answers

Answered by n5441287bi
2

Answer:

Given :-

Side of equilateral triangle = 8 cm

We know that all sides of equilateral triangle are equals !

We have to find the Side of triangle whose area is twice the area of 1st

\boxed{\sf\ \ Area\ of \ equilateral\ \triangle= \dfrac{\sqrt{3}}{4}a^2}

Area of equilateral △=

4

3

a

2

Where a = side

\begin{gathered}\longrightarrow\sf Area = \dfrac{\sqrt{3}}{4}\times (8)^2\\ \\ \longrightarrow\sf Area = \dfrac{\sqrt{3}}{\cancel{4}}\times \cancel{64}\\ \\ \longrightarrow\sf Area = \sqrt{3}\times 16\\ \\ \longrightarrow\sf Area \ of \ equilateral \triangle = 16\sqrt{3}cm^2\end{gathered}

⟶Area=

4

3

×(8)

2

⟶Area=

4

3

×

64

⟶Area=

3

×16

⟶Area of equilateral△=16

3

cm

2

Now the Area of that triangle whose area is twice the first

\begin{gathered}\longrightarrow\sf Area \ of \ \triangle_2= 2\times 16\sqrt{3}\\ \\ \longrightarrow\sf Area \ of \ \triangle_2= 32\sqrt{3}cm^2\end{gathered}

⟶Area of △

2

=2×16

3

⟶Area of △

2

=32

3

cm

2

Now the side of triangle 2

\begin{gathered}\longrightarrow\sf \dfrac{\sqrt{3}}{4}a^2= 32\sqrt{3}\\ \\ \longrightarrow\sf a^2= 32\cancel{\sqrt{3}}\times \dfrac{4}{\cancel{\sqrt{3}}}\\ \\ \longrightarrow\sf a^2= 128\\ \\ \longrightarrow\sf a= \sqrt{2\times 4\times 4\times 4}\\ \\ \longrightarrow\sf a= 8\sqrt{2}cm\end{gathered}

4

3

a

2

=32

3

⟶a

2

=32

3

×

3

4

⟶a

2

=128

⟶a=

2×4×4×4

⟶a=8

2

cm

\boxed{\sf \dag\ \ Side\ of \ triangle_2= 8\sqrt{2}cm}

† Side of triangle

2

=8

2

cm

Step-by-step explanation:

pl

Answered by omii077
0

Answer:

do u use I.n.s.t.a if u

report this reply me

Similar questions