Math, asked by Anonymous, 1 year ago

Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that triangle ABC is similar to triangle PQR

Answers

Answered by sonalmishra
16
mark as brainielist answer
Attachments:
Answered by psupriya789
2

Answer:

Answer:

Given two triangles. ΔABC and ΔPQR in which AB, BC and median AD of ΔABC are proportional to sides PQ, QR and median PM of ΔPQR

AB/PQ = BC/QR = AD/PM

To Prove: ΔABC ~ ΔPQR

Proof: AB/PQ = BC/QR = AD/PM

 AB/PQ = BC/QR = AD/PM (D is the mid-point of BC. M is the mid point of QR)

ΔABD ~ ΔPQM [SSS similarity criterion]

Therefore, ∠ABD = ∠PQM [Corresponding angles of two similar triangles are equal]

∠ABC = ∠PQR

In ΔABC and ΔPQR

AB/PQ = BC/QR ———(i)

∠ABC = ∠PQR ——-(ii)

From above equation (i) and (ii), we get

ΔABC ~ ΔPQR [By SAS similarity criterion]

Hence Proved

Similar questions