Math, asked by rishangmishra20, 6 months ago

Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm. Find its area.​

Answers

Answered by Anonymous
10

\huge{\mathbb{\red{ANSWER:-}}}

For a triangle :-

Given :-

\sf{ratio \: of \: the \: sides = 12 \: : \: 17 \: : \: 25}

\sf{perimeter (p) = 540 \: cm}

To Find :-

\sf{Area \: of \: this \: triangle = ?}

Using Formulas :-

\sf{perimeter \: of \: triangle = Sum \: of \: all \: sides}

\sf{For \: Scalene \: triangle-}

By Heron's Formula :-

\sf{Area =\sqrt{S(S-a)(S-b)(S-c)}}

\sf{here \: , \: S=Semi-perimeter=\dfrac{a+b+c}{2}}

\sf{a \: , b \: and \: c \: are \: the \: sides \: of \: the \: triangle}

Solution :-

\sf{Let \: the \: sides \: are \: 12x \: , \: 17x \: and \: 25x.}

\sf{perimeter = 540 \: cm}

\sf{(12x + 17x + 25x) = 540 \: cm}

\sf{54x = 540}

\sf{x = 10}

\sf{So \: , \: the \: sides \: are -}

\sf{a = 12(10) = 120 \: cm}

\sf{b = 17(10) = 170 \: cm}

\sf{c = 25(10) = 250 \: cm}

Now ,

\sf{S =\dfrac{a + b + c}{2} =\dfrac{540}{2} = 270 \: cm}

So ,

\sf{Area \: of \: the \: triangle -}

\sf{\sqrt{270(270-120)(270-170)(270-250)}}

\sf{\sqrt{270\times 150\times 100\times 20}}

\sf{\sqrt{27\times 15\times 100\times 100\times 20}}

\sf{\sqrt{9\times (3\times 15)\times 10000\times 20}}

\sf{\sqrt{9\times 45\times 20\times 10000}}

\sf{\sqrt{9\times 900\times 10000}}

\sf{\sqrt{(3^{2}\times 30^{2}\times 100^{2})}}

\sf{\sqrt{(3\times 30\times 100)^{2}}}

\sf{\sqrt{(9000)^{2}}}

\sf{9000 \: cm^{2}}

Result :-

\sf{Area \: of \: the \: triangle \: is \: 9000 \: cm^{2}}

Extra important Formulas :-

\star\sf{Area \: of \: a \: right \: angled \: triangle =\dfrac{1}{2}\times base\times height}

\star\sf{Area \: of \: an \: isosceles \: triangle =\dfrac{b}{4}\sqrt{(4a^{2} - b^{2})}}

Answered by ItźDyñamicgirł
9

 \sf \large \color{grey} \: QUESTION \\

Sides of a triangle are in the ratio of 12 : 17 : 25 and it's perimeter is 540 cm . Find its area .

 \\ \sf \large \color{purple} \: GIVEN

  • Sides of triangle are in ratio as 12 : 17 : 25.
  • It's perimeter is 540 cm

 \sf \large \color{red} \: REQUIRED \: TO \: FIND

Area

 \\ \sf \large \color{pink} \: SOLUTION

 \sf \: area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

Here, s is the semi perimeter .

and a , b , c are the sides of the triangle.

Given Perimeter = 540 cm

 \sf \: semi \: perimeter = s =  \dfrac{perimeter}{2}   \\ \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   s = \frac{540}{2}  \\   \\  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \sf s = 270 \: cm

Given Ratio sides is 12 : 17 : 25

Let sides be a = 12x cm , b = 17x cm , c = 25x cm

Where x is any number.

Now,

Perimeter = 540 cm

a + b + c = 540

12x + 17x + 25x = rep

54 x = 540

 \sf \: x =  \dfrac{540}{54}

x = 10

So,.

a = 12x cm = 12 × 10 = 120 cm

b = 17x cm = 17 × 10 = 170 cm

c = 25x cm = 25 × 10 = 250 cm

 \\  \sf \: area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

Putting a = 120 cm , b = 170 cm , c = 250 cm and S = 270 cm

 \sf \: area \:  =  \sqrt{270(270 -120)(270 - 170)(270 - 250) {cm}^{2}   }

 \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \sf \:   = \sqrt{270 \times 150 \times 100 \times 20 {cm}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \sqrt{(27 \times 15 \times 2)(10 {)}^{5} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sf \:  \sqrt{(27 \times 3){(10)}^{6} }

 \:  \:  \:  \:  \:  \:  \:  \: \:  \sf  = \sqrt{27 \times 30) \times  {10}^{5} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \sf \: \sqrt{(81) \times  {(10)}^{6} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf=  \sqrt{81}  \times  \sqrt{(10 {)}^{6} }

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= \sqrt{ {9}^{2} }  \times  \sqrt{(10 {)}^{6} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \sf \: (9) \times  {(10}^{6) \frac{1}{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sf \: (9) \times  {(10}^{3} )

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sf \color{blue} \: 9000

 \bf \color{red} \sf \: thus \: area = 9000 {cm}^{2}

Similar questions