Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. Find its area.
Answers
∴ Sides of triangle will be: 12x,17x and 25x
⇒Perimeter =540 cm(given)
⇒12x+17x+25x=540 cm,
⇒54x=540 cm
⇒x=10 cm
∴ Sides of triangle: a=120,b=170,c=250 cms
⇒2S=540
⇒S=270 cm
A= s(s−a)(s−b)(s−c)
= 270(270−120)(270−170)(270−250)
= 270×150×100×20
A=9000 cm²
Answer :-
- Area of Triangle = 9000 sq.cm.
Explanation :-
Given :
- Sides are in ratio 12 : 17 : 25.
- Perimeter of Triangle = 540 cm.
To Find :
- Area of Triangle.
Solution :
Let the sides be 12x, 17x and 25x.
And, We know that,
Perimeter of Triangle = Sum of all sides.
So, Put the values.
⇒ 12x + 17x + 25x = 540 cm.
⇒ 29x + 25x = 540 cm.
⇒ 54x = 540 cm.
⇒ x = 10 cm.
Therefore,
- 12x = 120 cm.
- 17x = 170 cm.
- 25x = 250 cm.
Now, Let's Calculate Area.
We will use Heron's Formula here.
First, Let's Calculate Semi-Perimeter.
s = (a + b + c)/2.
Here,
- s = Semi Perimeter.
- a = First side.
- b = Second Side.
- c = Third Side.
Put the values.
⇒ s = (120 + 170 + 250)/2.
⇒ s = 540/2.
⇒ s = 270 cm.
Now, Let's use Heron's Formula.
Heron's Formula = √s(s − a)(s − b)(s − c).
Put the values.
⇒ Area = √270(270−120)(270−170)(270−250)
⇒ Area = √270 × 150 × 100 × 20.
⇒ Area = √81000000.
⇒ Area = 9000 sq.cm.
Therefore, Area of Triangle = 9000 sq.cm.