Math, asked by leelasharma12135, 11 months ago

sides of the triangle are 13cm, 14cm and 15 cm, find the length of the
smallest altitude of the triangle.

Answers

Answered by MaheswariS
49

\textbf{Given:}

\text{Sides of the triangle are 13cm, 14cm and 15 cm}

\textbf{To find:}

\text{Smallest altitude of the triangle}

\textbf{Solution:}

\text{Let the sides be}

a=13\,cm,\;b=14\,cm,\;c=15\,cm

s=\dfrac{a+b+c}{2}

s=\dfrac{13+14+15}{2}

s=\dfrac{42}{2}=21

\textbf{Area of the triangle}

=\sqrt{s(s-a)(s-b)(s-c)}

=\sqrt{21(21-13)(21-14)(21-15)}

=\sqrt{21{\times}8{\times}7{\times}6}

=\sqrt{3{\times}7{\times}4{\times}2{\times}7{\times}2{\times}3}

=2{\times}3{\times}2{\times}7

=84\,cm^2

\textbf{Case(i):}

\text{Take, base}\;b=13\,cm

\text{But, Area=}84\,cm^2

\implies\dfrac{1}{2}{\times}b{\times}h=84

\implies\dfrac{1}{2}{\times}13{\times}h=84

\implies\,h=\dfrac{168}{13}

\implies\boxed{\,h=12.9\,cm}

\textbf{Case(ii):}

\text{Take, base}\;b=14\,cm

\text{But, Area=}84\,cm^2

\implies\dfrac{1}{2}{\times}b{\times}h=84

\implies\dfrac{1}{2}{\times}14{\times}h=84

\implies\,h=\dfrac{168}{14}

\implies\boxed{\,h=12\,cm}

\textbf{Case(iii):}

\text{Take, base}\;b=15\,cm

\text{But, Area=}84\,cm^2

\implies\dfrac{1}{2}{\times}b{\times}h=84

\implies\dfrac{1}{2}{\times}15{\times}h=84

\implies\,h=\dfrac{168}{15}

\implies\boxed{\,h=11.2\,cm}

\text{Comparing the 3 cases,}

\textbf{The smallest altitude of the triangle is 11.2 cm}

Answered by rpinfinityuniverse
6

Answer:

11.2 is the answer hope it helps u

Similar questions