Math, asked by MiraculousBabe, 3 months ago

*Silly and/or spam answers will not be tolerated*


Evaluate the limit:
\lim_{x \to -6} \frac{\sqrt{10 - x}-4 }{x + 6}
Please explain how to rationalize and solve for the limit.​

Answers

Answered by amansharma264
84

EXPLANATION.

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{\sqrt{10 - x} - 4}{x + 6}

As we know that,

First we put the value of x = -6 in equation and check their indeterminant form, we get.

\sf \implies \displaystyle \lim_{x \to -6}  \dfrac{\sqrt{10 - (-6)} - 4}{(-6) + 6}

\sf \implies \displaystyle \lim_{x \to -6}  \dfrac{\sqrt{16} - 4}{0}

\sf \implies \displaystyle \lim_{x \to -6}  \dfrac{4 - 4}{0} = \dfrac{0}{0}

As we can see that it is a form of 0/0 indeterminant form.

in 0/0 form if root is exist in equation, simply rationalize the equation, we get.

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{\sqrt{10 - x} - 4}{x + 6} \ \times \ \dfrac{\sqrt{10 - x} + 4}{\sqrt{10 - x}+ 4 }

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{(\sqrt{10 - x} - 4)(\sqrt{10 - x}  + 4)}{(x + 6)(\sqrt{10 - x}  + 4)}

As we know that,

Formula of :

⇒ x² - y² = (x - y)(x + y).

Using this formula in equation, we get.

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{(\sqrt{10 - x)^{2} } - (4)^{2}  }{(x + 6)(\sqrt{10 - x}  + 4)}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{10 - x - 16}{(x + 6)(\sqrt{10 - x}  + 4)}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{- x - 6}{(x + 6)(\sqrt{10 - x}   + 4)}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{-(x + 6)}{(x + 6)(\sqrt{10 - x}   + 4)}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{- 1}{(\sqrt{10 - x} + 4)}

Put the value of x = -6 in equation, we get.

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{-1}{(\sqrt{10 - (-6)}  + 4)}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{-1}{\sqrt{10 + 6}  + 4}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{-1}{\sqrt{16}  + 4}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{-1}{4 + 4}  = \dfrac{-1}{8}

\sf \implies \displaystyle \lim_{x \to -6} \dfrac{\sqrt{10 - x} - 4}{x + 6} = \dfrac{-1}{8}

                                                                                                                         

MORE INFORMATION.

By using some standard expansion.

(1) = eˣ = 1 + x + x²/2! + x³/3! + ,,,,,,,

(2) = e⁻ˣ = 1 - x + x²/2! - x³/3! + ,,,,,,,,

(3) = ㏒(1 + x) = x - x²/2 + x³/3 - ,,,,,,,,,

(4) = ㏒(1 - x) = -x - x²/2 - x³/3 - ,,,,,,,,

(5) = aˣ = 1 + (x㏒ a) + (x ㏒ a)²/2! + (x ㏒ a)³/3! + ,,,,,,


shadowsabers03: Great!
amansharma264: Thanku
amitkumar44481: Great :-)
amansharma264: Thanku
Answered by hanuhomecarepr72
5

REFER to the attachment

hopefully it will work ☺️☺️

Attachments:
Similar questions