Math, asked by Kappensam, 1 year ago

Simlify:
(1/2+root5) + (1/root5+root6) + (1/root6+root7) + (1/root7+root8)

Attachments:

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8}}}

\underline{\textbf{To Simplify:}}

\mathsf{\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8}}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{1}{2+\sqrt{5}}}

\mathsf{=\dfrac{1}{\sqrt{4}+\sqrt{5}}{\times}\dfrac{\sqrt{4}-\sqrt{5}}{\sqrt{4}-\sqrt{5}}}

\mathsf{=\dfrac{\sqrt{4}-\sqrt{5}}{(\sqrt{4})^2-(\sqrt{5})^2}}

\mathsf{=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}}

\mathsf{=\dfrac{\sqrt{4}-\sqrt{5}}{-1}}

\mathsf{=\sqrt{5}-\sqrt{4}}

\implies\mathsf{\dfrac{1}{\sqrt{4}+\sqrt{5}}=\sqrt{5}-\sqrt{4}}

\mathsf{Similarly,}

\implies\mathsf{\dfrac{1}{\sqrt{5}+\sqrt{6}}=\sqrt{6}-\sqrt{5}}

\implies\mathsf{\dfrac{1}{\sqrt{6}+\sqrt{7}}=\sqrt{7}-\sqrt{6}}

\implies\mathsf{\dfrac{1}{\sqrt{7}+\sqrt{8}}=\sqrt{8}-\sqrt{7}}

\mathsf{Now,}

\mathsf{\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8}}}

\mathsf{=\dfrac{1}{\sqrt{4}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8}}}

\mathsf{=(\sqrt{5}-\sqrt{4})+(\sqrt{6}-\sqrt{5})+(\sqrt{7}-\sqrt{6})+(\sqrt{8}-\sqrt{7})}

\mathsf{=-\sqrt{4}+\sqrt{8}}

\mathsf{=-2+2\sqrt{2}}

\mathsf{=2\sqrt{2}-2}

\underline{\textbf{Answer:}}

\mathsf{\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8}}=2\sqrt{2}-2}

Similar questions