Math, asked by MяMαgıcıαη, 1 month ago

Simple Question!!

If the height of the cylinder is equal to its diameter and the volume is 58212 cm³, then find the CSA and TSA of the cylinder.​

\bf\:{\dag}\:{\underline{\underline{\sf{\red{Note\::}}}}}

◐ Spammed answers will be reported.
◐ Best answer will be marked as brainliest.​

Answers

Answered by kinzal
236

Hey ❤ here is your answer ⤵️

Given :

Height of the Cylinder = Diameter of the Cylinder

Volume of the Cylinder = 58212 cm³

To Find :

CSA (curved surface area) and TSA (total surface area)

Explanation :

 \longrightarrow Let radius of the Cylinder = r cm

. ` . Height of the Cylinder = Diameter of the Cylinder (given)

Hence,

Height of the Cylinder = 2r = Diameter of the Cylinder

Now, we know that

Volume of the Cylinder = πr²h cm³

 \longrightarrow and According to the question h = 2r

So,

Volume of the Cylinder = πr²(2r)

Volume of the Cylinder = 2πr³ cm³

 \longrightarrow Given volume of Cylinder is 58212 cm³

So,

 \longrightarrow Volume of the Cylinder = 2πr³

 \longrightarrow 58212 = 2πr³

 \sf \frac{58212}{2} = \frac{22}{7} × r³ \\

 \sf \frac{29106 × 7}{22} = r³ \\

1323 × 7 = r³

r³ = 9261

 \longrightarrow  \sf r = \sqrt[3]{9261} \\

 \longrightarrow r = 21 cm

Now,  \sf Radius_{(r)} of the Cylinder = 21 cm

then,  \sf Height_{(h)} of the Cylinder = ( 2 × 21 ) cm = 42 cm

Now,  \sf CSA_{\green{(Curved \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 2πrh cm²

 \sf CSA_{\green{(Curved \: \: Surface \: \: Area)}_{\red{(Cylinder)}}}  = \bigg( 2 × \frac{22}{7} × 21 × 42 \bigg) \\

 \sf CSA_{\green{(Curved \: \: Surface \: \: Area)}_{\red{(Cylinder)}}}  = \bigg( 2 × \frac{22}{\cancel{7}} × \cancel{21}^{\: \: \cancel7×3} × 42 \bigg) \\

 \sf CSA_{\green{(Curved \: \: Surface \: \: Area)}_{\red{(Cylinder)}}}  = \underline{\purple{ 5544 \: \:  cm²}} \\

Now,

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = Base Area + CSA

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 2πr² + 2πrh

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 2πr(r + h)

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 2 × \frac{22}{\cancel7} × \cancel{21}^{\: \: \cancel7 × 3 } (21 + 42) \\

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 2 × 22 × 3 (63)

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = 132 (63)

 \sf TSA_{\green{(Total \: \: Surface \: \: Area)}_{\red{(Cylinder)}}} = \underline{\purple{ 8316 \: \: cm²}} \\

I hope it helps you ❤️✔️

Answered by sethrollins13
303

Given :

  • Height of the cylinder is equal to its diameter and the volume is 58212 cm³.

To Find :

  • C.S.A and T.S.A of Cylinder .

Solution :

\longmapsto\tt{Height(h)=Diameter(r)}

As we know that Diameter is double of Radius . So ,

\longmapsto\tt{h=2r}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\pi{{r}^{2}\times{2r}}}

\longmapsto\tt{2\pi{{r}^{3}}}

\longmapsto\tt{58212=2\times\dfrac{22}{7}\times{{r}^{3}}}

\longmapsto\tt{58212\times{7}=44\:{r}^{3}}

\longmapsto\tt{\cancel\dfrac{407484}{44}={r}^{3}}

\longmapsto\tt{9261={r}^{3}}

\longmapsto\tt\bf{21\:cm=r}

For C.S.A :

\longmapsto\tt{Height=2r=42\:cm}

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times{21}\times{2\times{21}}}

\longmapsto\tt{44\times{6}\times{21}}

\longmapsto\tt\bf{5544\:{cm}^{2}}

For T.S.A :

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cylindrr=2\pi{r(r+h)}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{7}\times{21}\times{(21+42)}}

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times{21}\times{{\cancel{63}}}}

\longmapsto\tt{44\times{21}\times{9}}

\longmapsto\tt\bf{8316\:{cm}^{2}}

Similar questions