Math, asked by Renumahala2601, 1 month ago

Simple Question!!

If the height of the cylinder is equal to its diameter and the volume is 58212 cm³, then find the CSA and TSA of the cylinder.​

\bf\:{\dag}\:{\underline{\underline{\sf{\red{Note\::}}}}}† \  \textless \ br /\  \textgreater \
◐ Spammed answers will be reported.
◐ Best answer will be marked as brainliest.​​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

The height of the cylinder is equal to its diameter.

Let assume that

  • Radius of cylinder be r cm

So,

  • Diameter of cylinder = 2r cm

Thus,

  • Height of cylinder, h = 2r cm

Also, given that,

  • The volume of cylinder is 58212 cm³

We know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: Volume_{cylinder} = \pi \:  {r}^{2}h \: }}}

So, on substituting the values, we get

\rm :\longmapsto\:58212 = \dfrac{22}{7}  \times  {r}^{2} \times 2r

\rm :\longmapsto\:58212 = \dfrac{44}{7}  \times  {r}^{3}

\rm :\longmapsto\:1323 = \dfrac{1}{7}  \times  {r}^{3}

\rm :\longmapsto\: {r}^{3} = 7 \times 7 \times 7 \times 3 \times 3 \times 3

\rm :\longmapsto\: {r}^{3} =  {(7 \times 3)}^{3}

\rm \implies\:\boxed{ \tt{ \: r \:  =  \: 21 \: cm \: }}

So, we get

Radius of cylinder, r = 21 cm

Height of cylinder, h = 2r = 2 × 21 = 42 cm

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: CSA_{cylinder} = 2\pi \: rh}}}

So, on substituting the values, we get

\rm :\longmapsto\:CSA_{cylinder} = 2 \times \dfrac{22}{7} \times 21 \times 42

\rm :\longmapsto\:CSA_{cylinder} = 2 \times 22 \times 3 \times 42

\rm \implies\:\boxed{ \tt{ \: CSA_{cylinder} = 5544 \:  {cm}^{2} \: }}

Also, We know that

\red{\rm :\longmapsto\:\boxed{ \tt{ \: TSA_{cylinder} = 2\pi \: r(h + r) \: }}}

So, on substituting the values, we get

\rm :\longmapsto\:TSA_{cylinder} = 2 \times \dfrac{22}{7} \times 21 \times (21 + 42)

\rm :\longmapsto\:TSA_{cylinder} = 2 \times 22 \times 3 \times 63

\rm \implies\:\boxed{ \tt{ \: TSA_{cylinder} = 8316 \:  {cm}^{2} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More information :-

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions