Math, asked by Lakshminivaa, 1 year ago

simplefy 1/7+4 root 3+1/2+root 5

Attachments:

Answers

Answered by yahootak
44
your answer is in attachment
Attachments:
Answered by pulakmath007
2

 \displaystyle \sf{  \frac{1}{7 + 4 \sqrt{3} } +  \frac{1}{2 +  \sqrt{5} }   }=  5 - 4 \sqrt{3}   +  \sqrt{5}

Given : \displaystyle \sf{  \frac{1}{7 + 4 \sqrt{3} } +  \frac{1}{2 +  \sqrt{5} }   }

To find : To simplify

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  \frac{1}{7 + 4 \sqrt{3} } +  \frac{1}{2 +  \sqrt{5} }   }

Step 2 of 2 :

Simplify the given expression

We simplify it as below

\displaystyle \sf{  \frac{1}{7 + 4 \sqrt{3} } +  \frac{1}{2 +  \sqrt{5} } }

\displaystyle \sf{  =  \frac{7 - 4 \sqrt{3} }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3} ) } +  \frac{2 -  \sqrt{5} }{(2 +  \sqrt{5})(2 -  \sqrt{5})  } }

\displaystyle \sf{  =  \frac{7 - 4 \sqrt{3} }{ {7}^{2} -  {(4 \sqrt{3}) }^{2}   } +  \frac{2 -  \sqrt{5} }{ {2}^{2}    -  {( \sqrt{5} )}^{2} } }

\displaystyle \sf{  =  \frac{7 - 4 \sqrt{3} }{ 49 - 48} +  \frac{2 -  \sqrt{5} }{ 4 - 5} }

\displaystyle \sf{  =  \frac{7 - 4 \sqrt{3} }{ 1} +  \frac{2 -  \sqrt{5} }{  - 1} }

\displaystyle \sf{  =  7 - 4 \sqrt{3}  -   2  +  \sqrt{5}  }

\displaystyle \sf{  =  5 - 4 \sqrt{3}   +  \sqrt{5}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions