Math, asked by dasjunupehoye, 1 year ago

Simplify 1/( 2+√3) + 2/(√5- √3) + 1/(2-√5)

Answers

Answered by BrainlyConqueror0901
100

Answer:

\huge{\boxed{\sf{ \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }=0 }}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  \\ so \: we \: rationlise \: the \: denominator \\   = \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5 }+  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} }  \\  =  \frac{2 -  \sqrt{3} }{ {2}^{2} -  { \sqrt{3} }^{2}  }  +  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{  { \sqrt{5} }^{2}  -   { \sqrt{3} }^{2}   }  +  \frac{2 +  \sqrt{5} }{ {2}^{2} -  { \sqrt{5} }^{2}  }  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  +  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{5 - 3}  +  \frac{2 +  \sqrt{5} }{4 - 5}  \\  \frac{2 -  \sqrt{3} }{1}  +  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{2}   -   \frac{2 +  \sqrt{5} }{1}  \\  =  \frac{4 - 2 \sqrt{3} + 2 \sqrt{5}  + 2 \sqrt{3} - (4 +  2 \sqrt{5} ) }{2}  \\  =  \frac{4  - 4- 2 \sqrt{3}  + 2 \sqrt{3}   + 2 \sqrt{5} - 2 \sqrt{5}  }{2}  \\  =  \frac{0}{2}  \\  = 0

\huge{\boxed{\sf{ \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }=0 }}}

Similar questions