Math, asked by rehadewan08, 1 month ago

simplify 1/2+√5 + 1/√5+√6 + 1/√6+√7 + 1/√7+√8 + 1/√8+√9

( warning :- no spam )​

Attachments:

Answers

Answered by llMusicWorldll
48

\huge\purple{\mid{\fbox{\tt{Answer✿࿐}}\mid}}

Kindly refer to the attachments

Attachments:
Answered by mathdude500
9

\large\underline{\sf{Solution-}}

 \sf \: \dfrac{1}{2 +\sqrt{5} }+\dfrac{1}{ \sqrt{5}+\sqrt{6} }+\dfrac{1}{ \sqrt{6} +\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8} }  + \dfrac{1}{\sqrt{8}+\sqrt{9}}

Consider,

 \red{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{5}}}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5}  + 2}

☆ On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5}  + 2} \times  \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{ {( \sqrt{5} )}^{2}  -  {(2)}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{5 - 4}

\rm \:  =  \:  \:  \sqrt{5} - 2

 \red{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{5}} =  \sqrt{5}  - 2 -  -  -  - (1)}

Consider,

 \blue{\bf :\longmapsto\:\dfrac{1}{ \sqrt{5}  +  \sqrt{6}}}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{6} +  \sqrt{5}  }

☆ On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{6} +  \sqrt{5}  } \times \dfrac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6} -  \sqrt{5}}

\rm \:  =  \:  \: \dfrac{ \sqrt{6} -  \sqrt{5}  }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{5} )}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{6}  -  \sqrt{5} }{6 - 5}

\rm \:  =  \:  \: \dfrac{ \sqrt{6}  -  \sqrt{5} }{1}

\rm \:  =  \:  \:  \sqrt{6} -  \sqrt{5}

 \blue{\bf :\longmapsto\:\dfrac{1}{ \sqrt{5}  +  \sqrt{6}} =  \sqrt{6} -  \sqrt{5} -  -  -(2)}

Consider,

 \green{\bf :\longmapsto\:\dfrac{1}{ \sqrt{6}  +  \sqrt{7}}}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{7} +  \sqrt{6}  }

☆ On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{7} +  \sqrt{6}} \times  \dfrac{ \sqrt{7}  -  \sqrt{6} }{ \sqrt{7}  -  \sqrt{6} }

\rm \:  =  \:  \: \dfrac{ \sqrt{7} -  \sqrt{6}  }{ {( \sqrt{7} )}^{2}  -  {( \sqrt{6} )}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{7}  -  \sqrt{6} }{7 - 6}

\rm \:  =  \:  \: \dfrac{ \sqrt{7}  -  \sqrt{6} }{1}

\rm \:  =  \:  \:  \sqrt{7}  -  \sqrt{6}

 \green{\bf :\longmapsto\:\dfrac{1}{ \sqrt{6}  +  \sqrt{7}} =  \sqrt{7}  -  \sqrt{6}  -  -  - (3)}

Consider,

 \purple{\bf :\longmapsto\:\dfrac{1}{ \sqrt{7}  +  \sqrt{8}}}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{8} +  \sqrt{7}}

☆ On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{8} +  \sqrt{7}} \times  \dfrac{ \sqrt{8}  -  \sqrt{7} }{ \sqrt{8}  -  \sqrt{7} }

\rm \:  =  \:  \: \dfrac{ \sqrt{8} -  \sqrt{7}  }{ {( \sqrt{8} )}^{2}  -  {( \sqrt{7} )}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{8}  -  \sqrt{7} }{8 - 7}

\rm \:  =  \:  \: \dfrac{ \sqrt{8}  -  \sqrt{7} }{1}

\rm \:  =  \:  \:  \sqrt{8}  -  \sqrt{7}

 \purple{\bf :\longmapsto\:\dfrac{1}{ \sqrt{7}  +  \sqrt{8}} =  \sqrt{8}  -  \sqrt{7}  -  -  - (4)}

Consider,

 \pink{\bf :\longmapsto\:\dfrac{1}{ \sqrt{8}  +  \sqrt{9}}}

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{9} +  \sqrt{8}}

☆ On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{9} +  \sqrt{8}} \times  \dfrac{ \sqrt{9}  -  \sqrt{8} }{ \sqrt{9}  -  \sqrt{8} }

\rm \:  =  \:  \: \dfrac{ \sqrt{9} -  \sqrt{8}  }{ {( \sqrt{9} )}^{2}  -  {( \sqrt{8} )}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{9}  -  \sqrt{8} }{1}

\rm \:  =  \:  \: 3 -  \sqrt{8}

 \pink{\bf :\longmapsto\:\dfrac{1}{ \sqrt{8}  +  \sqrt{9}} = 3 -  \sqrt{8} -  -  - (5)}

Hence,

\red{\sf\:\dfrac{1}{2 +\sqrt{5} }+\dfrac{1}{ \sqrt{5}+\sqrt{6} }+\dfrac{1}{ \sqrt{6}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{8} }+\dfrac{1}{\sqrt{8}+\sqrt{9}}}

\rm \:=(\sqrt{5}-2)+(\sqrt{6}-\sqrt{5)}+ (\sqrt{7}-\sqrt{6})+(\sqrt{8}-\sqrt{7})+ (3-\sqrt{8})

\rm \:=\cancel{\sqrt{5}}-2+\cancel{\sqrt{6}}-\cancel{\sqrt{5}}+ \cancel{\sqrt{7}}-\cancel{\sqrt{6}}+\cancel{\sqrt{8}}-\cancel{\sqrt{7}}+ 3-\cancel{\sqrt{8}}

\rm \:  =  \:  \: 3 - 2

\rm \:  =  \:  \: 1

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions