Simplify : {[(-1/4) 2]-2}-1
Answers
Answered by
6
Answer:
Expression ( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}
Factor the bracket terms into power,
={4}^{2} - 3( {2}^{3} ) {}^{ \frac{2}{3} } \times 1 + ( \frac{3}{4} ) {}^{2 \times ( \frac{ - 1}{2}) }
=16 - 3 \times {2}^{2} + ( \frac{3}{4} ) {}^{ - 1}
=16 - 12 + \frac{4}{3}
=4 + \frac{4}{3}
=\frac{12 + 4}{3}
=\frac{16}{3}
Therefore, ( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}=\frac{16}{3}
Answered by
13
this is the answer of this question.
Attachments:
Similar questions