Math, asked by neelimagoel23, 1 year ago

Simplify
(1/4)^-2 - 3(8)^2/3 (4)^0 + (9/16)^-1/2

Answers

Answered by rajeev378
147
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer.

( \frac{1}{4})  {}^{ - 2}  - 3(8) {}^{ \frac{2}{3} } (4) {}^{0}  + ( \frac{9}{16} ) {}^{ \frac{ - 1}{2} }  \\  \\  =  {4}^{2}  - 3( {2}^{3} ) {}^{ \frac{2}{3} }  \times 1 + ( \frac{3}{4} ) {}^{2 \times ( \frac{ - 1}{2}) }   \\  \\  = 16 - 3 \times  {2}^{2}  + ( \frac{3}{4} ) {}^{ - 1}  \\  \\  = 16 - 12 +  \frac{4}{3}  \\  \\  = 4 +  \frac{4}{3}  \\  \\  =  \frac{12 + 4}{3}  \\  \\  =  \frac{16}{3}
\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope \: it \: helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!}}}

<marquee>
\huge\bf{\huge{\bf{\bf{@...rajeev378}}}}
Answered by pinquancaro
113

( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}=\frac{16}{3}

Step-by-step explanation:

Given : Expression ( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}

To find : Simplify the expression ?

Solution :

Expression ( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}

Factor the bracket terms into power,

={4}^{2}  - 3( {2}^{3} ) {}^{ \frac{2}{3} }  \times 1 + ( \frac{3}{4} ) {}^{2 \times ( \frac{ - 1}{2}) }

=16 - 3 \times  {2}^{2}  + ( \frac{3}{4} ) {}^{ - 1}

=16 - 12 +  \frac{4}{3}

=4 +  \frac{4}{3}

=\frac{12 + 4}{3}

=\frac{16}{3}

Therefore,  ( \frac{1}{4})^{ - 2}- 3(8)^{ \frac{2}{3}}(4)^{0} +( \frac{9}{16})^{ \frac{-1}{2}}=\frac{16}{3}

#Learn more

[{(-1/4)^2}^-1]^-2 simplify​

https://brainly.in/question/11129694

Similar questions