Math, asked by rockstar619, 10 months ago

Simplify 1/√5-√2 solve this if you solve this i will mark you as brainliest​

Answers

Answered by 0ShivankPandey0
1

=1/√5-√2=0

=(1/√5)(*5)(/5)-(2)=0

=(√5/5)-(√2/1)=0

TAKE THE LCM

=(1√5-5√2)/(5)

AAYA SAMAJ ME.

Answered by BrainlyPopularman
6

GIVEN :

• A number   \\ { \bold{\dfrac{1}{ \sqrt{5} -  \sqrt{2}}}} \\

TO FIND :

Simplified form = ?

SOLUTION :

• Let the number –

  \\ \implies { \bold{x =  \dfrac{1}{ \sqrt{5}  -  \sqrt{2} } }} \\

• On rationalizing the denominator –

  \\ \implies { \bold{x =  \dfrac{1}{ \sqrt{5}  -  \sqrt{2} }  \times  \ffrac{ \sqrt{5} +  \sqrt{2}}{ \sqrt{5} +  \sqrt{2}  } }} \\

  \\ \implies { \bold{x = \dfrac{\sqrt{5} +  \sqrt{2}}{ (\sqrt{5} +  \sqrt{2})({ \sqrt{5}  -  \sqrt{2} )} } }} \\

• On Using identity –

  \\ \implies  \large{ \boxed{ \bold{(a + b)(a - b) =  {a}^{2} -  {b}^{2}}}} \\

• So that –

  \\ \implies { \bold{x = \dfrac{\sqrt{5} +  \sqrt{2}}{({ \sqrt{5} ) ^{2}  -  (\sqrt{2} )^{2} } } }} \\

  \\ \implies { \bold{x = \dfrac{\sqrt{5} +  \sqrt{2}}{5 - 2} }} \\

  \\ \implies { \bold{x = \dfrac{\sqrt{5} +  \sqrt{2}}{3} }} \\

  \\ \implies \large{ \boxed{ \bold{x = \dfrac{1}{3}  ({\sqrt{5} +  \sqrt{2})}}}} \\

 \\ \rule{220}{2} \\

Similar questions